จำนวน
จากวิกิพีเดีย สารานุกรมเสรี
จำนวน (number) คือวัตถุนามธรรมที่ใช้สำหรับอธิบายปริมาณ จำนวนมีหลายแบบ จำนวนที่เป็นที่คุ้นเคยก็คือ
- จำนวนธรรมชาติ {1,2,3,...} (ในหลายครั้งอาจจัดให้ 0 เป็นจำนวนธรรมชาิติด้วย) ที่เขียนแทนด้วยว่า N
- ถ้าเรายอมให้มีจำนวนเต็มลบ เราจะได้ จำนวนเต็ม หรือที่เขียนแทนด้วย Z
- อัตราส่วนระหว่างจำนวนเต็มเรียกว่า จำนวนตรรกยะ หรือเศษส่วน โดยที่เซตของจำนวนตรรกยะทั้งหมดเขียนแทนด้วย Q
- ในการแสดงจำนวนด้วยระบบตัวเลขทศนิยม ถ้าเรารวม จำนวนที่มีจำนวนหลักไม่จำกัดและไม่จำเป็นต้องมีการซ้ำกันของทศนิยม เข้าไปด้วย เราจะได้จำนวนจริง หรือ R
- จำนวนจริงที่ไม่เป็นจำนวนตรรกยะเรียกว่า จำนวนอตรรกยะ
- จำนวนจริงสามารถขยายเป็น จำนวนเชิงซ้อน หรือ C ที่ทำให้เกิดฟิลด์ปิดเชิงพีชคณิตที่ทุก ๆ พหุนาม ที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อน สามารถแยกตัวประกอบได้อย่างสมบูรณ์
- จำนวนเชิงซ้อนที่เป็นรากหรือคำตอบของสมการพหุนาม ที่มีสัมประสิทธิ์เป็นจำนวนตรรกยะ เรียกว่า จำนวนเชิงพีชคณิต
- จำนวนเชิงซ้อนที่ไม่ใช่จำนวนเชิงพีชคณิตเรียกว่า จำนวนอดิศัย (transcendental number)
ตัวอักษรสัญลักษณ์ข้างต้น มักเขียนให้เป็นตัวใหญ่บนกระดานดำ นั่นคือ
จำนวนเชิงซ้อน สามารถขยายเป็น ควอเทอร์เนียน แต่การคูณในระบบควอเทอร์เนียนนั้น ไม่มีคุณสมบัติการสลับที่. ในลักษณะเดียวกัน ออคโนเนียน คือ ส่วนขยายของควอเทอร์เนียน แต่ในครั้งนี้ คุณสมบัติการเปลี่ยนหมู่ จะสูญเสียไป ความจริงก็คือระบบพีชคณิตการหารที่มีมิติจำกัด และมีคุณสมบัติการเปลี่ยนหมู่บน R คือจำนวนจริง, จำนวนเชิงซ้อน และควอเทอร์เนียน เท่านั้น สมาชิกของฟีลด์ฟังก์ชันเชิงพีชคณิตที่มีแคแรกเทอริสติกจำกัดมีลักษณะหลายๆ ประการคล้ายคลึงกับจำนวน ทำให้นักทฤษฎีจำนวนมักพิจารณาให้เป็นจำนวนประเภทหนึ่ง
ในทางคณิตศาสตร์ จำนวน นั้่นแตกต่างจาก ตัวเลข ซึ่งเป็นกลุ่มของสัญลักษณ์ที่ใช้แทนจำนวน รูปแบบการเขียนจำนวนด้วยตัวเลขหลาย ๆ หลักถูกอธิบายในระบบตัวเลข
ผู้คนมักนิยมกำหนดจำนวนให้กับวัตถุต่าง ๆ เพื่อสร้างชื่อเฉพาะ ซึ่งมีแผนการให้หมายเลขอยู่หลายแบบ
สารบัญ |
[แก้] ส่วนขยาย
ส่วนขยายในที่นี้หมายถึงการขยาย จำนวนมาตรฐาน (ซึ่งโดยปกติหมายถึงจำนวนจริงหรือจำนวนเชิงซ้อน) ออกไปให้ครอบคลุม จำนวนชนิดอื่นๆ มากยิ่งขึ้น
- จำนวนซูเปอร์เรียล (Superreal) และ จำนวนไฮเพอร์เรียล (hyperreal), ได้นิยามจำนวนอนันต์ และ จำนวนกณิกนันต์เพิ่มเติมในระบบจำนวนจริง
- จำนวนกณิกนันต์ (infinitesimal number) จำนวนประเภทนี้ ในกรณีเป็นจำนวนบวก หมายถึง "จำนวนที่เล็กกว่าจำนวนจริงบวกทุกตัวแต่ใหญ่กว่าศูนย์" ส่วนกรณีที่เป็นจำนวนลบหมายถึง "จำนวนที่ใหญ่กว่าจำนวนจริงลบทุกตัวแต่น้อยกว่าศูนย์"
- จำนวนอนันต์ (infinite number) จำนวนประเภทนี้หมายถึง "จำนวนที่ใหญ่กว่าจำนวนจริงทุกตัว" ในกรณีเป็นจำนวนบวก หรือ "จำนวนที่เล็กกว่าจำนวนจริงทุกตัว" ในกรณีเป็นจำนวนลบ
- การเพิ่มจำนวนสองประเภทนี้เข้าไปในระบบจำนวนมาตรฐาน มีผลให้แคลคูลัสตามแนวคิดดั้งเดิมของไลบ์นิซสามารถพิสูจน์อย่างเคร่งครัดได้
- นอกจากนี้ยังมีจำนวนเซอร์เรียล (surreal number)ที่ถูกนิยามโดยจอห์น คอนเวย์ จำนวนเซอร์เรียลครอบคลุมจำนวนไฮเพอร์เรียลและยังมีจำนวนชนิดอื่นๆ เพิ่มเติมมากขึ้นไปอีก
- ในขณะที่จำนวนจริง (ส่วนใหญ่) มีส่วนขยายไปทางด้านขวา (ทศนิยม) ที่มีความยาวไม่จำกัด เราสามารถลองให้จำนวนมีส่วนขยายไปทางด้านซ้ายที่มีความยาวไม่จำกัดในฐาน p เมื่อ p เป็นจำนวนเฉพาะ การขยายดังกล่าวจะทำให้เราได้จำนวน p-แอดิก
- สำหรับการจัดการกับเซตที่มีจำนวนสมาชิกไม่จำกัด จำนวนธรรมชาติถูกทำให้มีนัยทั่วไปเป็นจำนวนเชิงอันดับที่ (ordinal number) สำหรับระบุลำดับในเซต และจำนวนเชิงการนับ (cardinal number) สำหรับระบุขนาด (ในกรณีของเซตจำกัด จำนวนเชิงอันดับที่และจำนวนเชิงการนับจะเหมือนกัน ความแตกต่างจะเกิดขึ้นในกรณีของเซตไม่จำกัดเท่านั้น)
การดำเนินการทางพีชคณิตของจำนวน เช่น การบวก การลบ การคูณ และ การหาร ถูกทำให้มีนัยทั่วไปในสาขาของคณิตศาสตร์ ที่เรียกว่า พีชคณิตนามธรรม ทำให้เราได้กรุป, ริง, และฟิลด์
[แก้] ดูเพิ่ม
- ระบบจำนวนอารบิก
- จำนวนคู่และจำนวนคี่
- จำนวนขนาดใหญ่
- รายการของจำนวน
- ค่าคงที่ทางคณิตศาสตร์
- จำนวนจากความเชื่อ (mythical number)
- จำนวนลบและจำนวนไม่เป็นลบ
- orders of magnitude (numbers)
- ค่าคงที่เชิงกายภาพ
- จำนวนเฉพาะ
- จำนวนขนาดเล็ก
- subitizing and counting
- จำนวนในภาษาต่างๆ
[แก้] อ้างอิง
- Number, วิกิพีเดีย ภาษาอังกฤษ
- R. Courant, H. Robbins and I. Stewart. Chapter 9 in What is Mathematics?, 2nd Ed. Oxford University Press, 1996.
- D.E. Knuth. Surreal Number. Addison-Wesley, 1974