Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
数 (数学) - Wikipedia

数 (数学)

维基百科,自由的百科全书

Image:03wiki-zn-frontpage-icon.gif数 (数学)正在翻译。欢迎您积极翻译与修订
目前已翻译15%

其他关于“数”的解释请参看


數學.
基本

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

自然數 \mathbb{N}
負數
整數 \mathbb{Z}
有理數 \mathbb{Q}
無理數
實數 \mathbb{R}
虛數
複數 \mathbb{C}
代數數
超越數

延伸

雙複數
超複數
四元數 \mathbb{H}
共四元數
複四元數
八元數 \mathbb{O}
十六元數
Tessarine
超數
大實數
極實數
超實數

其他

公稱值
雙曲複數 \mathbb{R}^{1,1}
序列號
超限數
序數
基數
質數
P進數
規矩數
可計算數
整數序列
數學常數
大數
圓周率 π = 3.141592654...
e (數學常數) = 2.718281828...
虛數單位 i2 = − 1
無窮

是表示一計數或度量的抽象實體。而一個用來表示數的符號稱做記數系統。一般而言,記數系統通常被使用在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如分數、負數、無理數、超越數及複數等抽象化的概念。

起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。

數的算術運算(如)在抽象代數這一數學分支內被廣義化成抽象數字系統,如等。

目录

[编辑] 數的類別

數可以被分類進被稱為數系集合內。對於以符號表示數的不同方式,則請看記數系統

[编辑] 自然數

最常用的數為自然數,有些人指正整數,有些人則指非負整數。前者多在數論中被使用,而在集合論電腦科學中則多使用後者的定義。

十進位數字系統裡,自然數的標記符號為0至9等十個位數,將以十為基數的進位制使用在大於九的數上。因此,大於九的數會有兩個或兩以上的位數。表示所有自然數的集合為\mathbb{N}

[编辑] 整數

負數是小於0的數,通常在其前面加上一負號,來表示其為正數的對立。例如,若一個正數是用來表示距一定點右邊多少的距離,則一個負數即表示距此定點左邊多少的距離。相似地,若一正數表示一銀行存款,則一負數即表示一銀行提款。負整數、正整數和零三者即合稱為整數\mathbb{Z}(德語Zahl的縮寫)。

[编辑] 有理數

有理數是指一可以被表示成整數分子和非零整數分母分數的數。分數m/n代表一被分做相同的n份,再取m份後的量。兩個不同分數可能會對應到相同的有理數,如1/2和2/4是相同的。若m的絕對值大於n的話,其分數的絕對值會大於一。分數可以是正的、負的、或零。所有分數所組成的集合包含有整數,因為每一個整數都可以寫成分母為1的分數。有理數的符號為\mathbb{Q}(quotient的縮寫)。

[编辑] 實數

不嚴謹地說,實數可以和一連續的直線視為同一事物。所有的有理數都是實數,同樣地,實數一樣可以分成正數、零和負數。

實數可以被其數學性質獨特地描繪出:它是唯一的一個完備全序。但它不是個代數閉域

十進位數是另一種能表示數的方式。在以十為底的數字系統內,數可以被寫成一連串的位數,且在個位數右邊加上句號(小數點)(在美國和英國等地)或逗號(在歐洲大陸),負實數則在再前面加上一個負號。以十進位標記的有理數,其位數會一直重復或中斷(雖然其後面可以加上任意數量的零),而0是唯一不能以重復位數定義的實數。例如,分數 5/4 能夠寫做中斷位數的十進位數 1.25,也能寫做重復位數的十進位數 1.24999...(無限的9)。分數 1/3 只能夠寫做 0.3333...(無限的3)。所有重復與中斷的十進位數定義了也能被寫成分數的有理數。而不條像重復與中斷的十進位數一般,非重復且非中斷的十進位數代表無理數,不能被寫成分數的數。例如,著名的數學常數,π(圓周率)和\sqrt{2}都是無理數,表示成十進位數 0.101001000100001...的實數也是無理數,因為其表示不會重復,也不會中斷。

實數由所有能被十進位數表示的數所組成,不論其為有理數或無理數。另外,實數也可以分為代數數超越數,其中超越數一定是無理數且有理數一定是代數數,其他則不一定。實數的符號為\mathbb{R}。實數可以被用來表示量度,而且對應至數線上的點。當量度只可能精準至某一程度時,使用實數來表示量度總是會有一些誤差。這一問題通常以取定一適當位數的有效數字來處理。

[编辑] 複數

移動到更多程次的抽象化時,實數可以被延伸至複數 \mathbb{C}。歷史上,此數的誕生源自於如何將負數取平方根的問題。從這一問題,一個新的數被發現了:負一的平方根。此數被標記為i,由萊昂哈德·歐拉介紹出的符號。複數包含了所有有a+bi形式的數,其中ab是實數。當a為零時,a+bi被稱為虛數。相同地,當b為零時,a+bi為實數,因為它沒有虛數部份。一個ab為整數的複數稱為高斯整數。複數是個代數閉域,即任一複數係數的多項式都能有複數解。複數也可以對應至複數平面上的點。

上述就提到的各個數系,每個都是下一個數系的子集。 以符號來表示的話,即為\mathbb{N} \sub \mathbb{Z} \sub \mathbb{Q} \sub \mathbb{R} \sub \mathbb{C}

[编辑] 其他類型

Superreal, hyperreal and surreal numbers 以加上無限小和無限大兩種數來延伸實數,但依然是

The idea behind p-adic numbers is this: While real numbers may have infinitely long expansions to the right of the decimal point, these numbers allow for infinitely long expansions to the left. The number system which results depends on what base is used for the digits: any base is possible, but a system with the best mathematical properties is obtained when the base is a prime number.

For dealing with infinite collections, the natural numbers have been generalized to the ordinal numbers and to the cardinal numbers. The former gives the ordering of the collection, while the latter gives its size. For the finite set, the ordinal and cardinal numbers are equivalent, but they differ in the infinite case.

There are also other sets of numbers with specialized uses. Some are subsets of the complex numbers. For example, algebraic numbers are the roots of polynomials with rational coefficients. Complex numbers that are not algebraic are called transcendental numbers.

Sets of numbers that are not subsets of the complex numbers include the quaternions \mathbb{H}, invented by Sir William Rowan Hamilton, in which multiplication is not commutative, and the octonions, in which multiplication is not associative. Elements of function fields of finite characteristic behave in some ways like numbers and are often regarded as numbers by number theorists.


[编辑] 表示方式

[编辑] 記數系統

數和以符號來表示數的記數系統不同。五可以表示成十進位數5和羅馬數字。記數系統在歷史上的重要發展是進位制的發展,如現今的十進位制,可以用來表示極大的數。而羅馬數字則需要額外的符號來表示較大的數。

[编辑] 歷史

[编辑] 整數的歷史

[编辑] 第一個數

更多資料:[[記數系統的歷史]]

數的第一次使用可回溯到大約西元前三萬年前,當計數符號被舊石器時代的人使用的時期。現今所知最早的一個例子在南非的一個洞穴內。[1]此一系統沒有進位制的概念(如現今所用的十進位制),這使得它表示大數的能力受到了限制。現今所知最早有進位制的系統則是美索不達米亞的六十進位制(約西元前3400年),而最早的十進位制在西元前3100年的埃及[2]

[编辑] 0的歷史

更多資料:[[History of zero]]

把零當成數來使用和其在進位制中當占位標記不同。許多的古印度人使用梵文Shunya來指虛無這一概念,而在數學文章內,這一詞則常被拿來指零這一數。[3]巴膩尼(Pāṇini,西元前5世紀)在其以梵文形式文法的書-八章書(Ashtadhyayi)裡,使用了無效(零)算子。

文獻顯示古希臘似乎不確定零做成一個數的地位:他們問自己"無物如何變成有物",因而導致有趣的哲學問題。在中世紀時,零和真空的性質和存在甚至成了宗教上的爭論。埃利亞人芝諾悖論很大一部份便依靠在對零不確定的解釋上。(古希臘人甚至懷疑過1是否是一個數。)

墨西哥中南部奧爾梅克文明晚期的人民已在新大陸上開始使用真正的零,其時間可能是在西元前4世紀,但較肯定的是在西元前40年,它變成了瑪雅數字和瑪雅曆的一部份,但完全沒有影響到舊大陸的記數系統。

西元130年時,托勒密喜帕恰斯和巴比倫人在六十進位制裡使用了零的符號(小圓圈加上一長上標線)所影響,將其使用在希臘數字上。因為它只是單獨使用,而非做為一占位符,希臘的零是舊大陸第一個做為書寫使用的真正的零。而在之後的拜占庭抄本上,希臘的零才演變成了希臘字母Ο(另外它也有70的意思)。

另一真正的零在西元525年被使用在以羅馬數字編製的表格上(戴奧尼索斯‧艾克西古斯是現知第一位使用者),但當時是使用意思為無物的一個名詞nulla,而非一個符號。當除法把零視為餘數時,則使用另一意思也是無物的詞nihil。中世紀的零被所有中世紀計算復活節計算家們使用著。其首字母 N 的單獨使用是在西元725年由聖比德或其同僚在羅字數字的表格上使用,一個真正的零的符號。

零的一個早期書寫使用是於西元628年由婆羅摩笈多(寫於宇宙的開始(Brahmasphutasiddhanta))所使用的。他把零視為一個數,並討論包含零的運算,包括除法。在同一時期(西元七世紀),其概念已很清楚地傳到了柬埔寨,後來顯示其觀念的文書更傳到了中國伊斯蘭世界。

[编辑] 負數的歷史

更多資料:[[First usage of negative numbers]]

負數的抽象概念早在西元前100年至50年間就被確認過了。中國九章算術裡就提到尋找圖形面積的方法:以紅色棒子來標記正數,黑色來標記負數。這是負數在東方最早被提及的記錄。而西方的第一次論述則是在西元三世紀的希臘,丟番圖在其著作Arithhmetica裡提及一個和4x + 20 = 0(其解為負數)相等的方程,且說這個方程會給出荒謬的解答。

在西元七世紀間,負數在印度被用來表示負債。丟番圖先前的論述被印度數學家婆羅摩笈多在宇宙的開始中討論的更詳盡,他使用負數來產生公式解,到現在還依然被使用著。但到了西元12世紀的印度,婆什迦羅第二在得出一元二次方程的負根之後,卻還說這一負值「在此例不被採用,因為它不適合;人們不會同意有負根的。」

大多數的歐洲數學家直到西元十七世紀仍不接受負數的概念,雖然斐波那契允許負數在金融問題上被解釋為負債,後來又允許視為損失。負數在歐洲的第一次被使用是在西元十五世紀被尼古拉斯.丘凱所使用的。他把負號加上數的右上方(冪的位置)上來表示負數,但也說這些負數是「荒謬的數」。

直到十八世紀,瑞士數學家萊昂哈德·歐拉相信負數會大於無限[來源請求],而且一般的實作應該忽略任何由題目導出的負數,因為它們是無意義的。

[编辑] 有理數、無理數和實數的歷史

更多資料:[[History of irrational numbers and History of pi]]

[编辑] 有理數的歷史

It is likely that the concept of fractional numbers dates to prehistoric times. Even the Ancient Egyptians wrote math texts describing how to convert general fractions into their special notation. Classical Greek and Indian mathematicians made studies of the theory of rational numbers, as part of the general study of number theory. The best known of these is Euclid's Elements, dating to roughly 300 BC. Of the Indian texts, the most relevant is the Sthananga Sutra, which also covers number theory as part of a general study of mathematics.

The concept of decimal fractions is closely linked with decimal place value notation; the two seem to have developed in tandem. For example, it is common for the Jain math sutras to include calculations of decimal-fraction approximations to pi or the square root of two. Similarly, Babylonian math texts had always used sexagesimal fractions with great frequency.

[编辑] 無理數的歷史

The earliest known use of irrational numbers was in the Indian Sulba Sutras composed between 800-500 BC. The first existence proofs of irrational numbers is usually attributed to Pythagoras, more specifically to the Pythagorean Hippasus of Metapontum, who produced a (most likely geometrical) proof of the irrationality of the square root of 2. The story goes that Hippasus discovered irrational numbers when trying to represent the square root of 2 as a fraction. However Pythagoras believed in the absoluteness of numbers, and could not accept the existence of irrational numbers. He could not disprove their existence through logic, but his beliefs would not accept the existence of irrational numbers and so he sentenced Hippasus to death by drowning.

The sixteenth century saw the final acceptance by Europeans of negative, integral and fractional numbers. The seventeenth century saw decimal fractions with the modern notation quite generally used by mathematicians. But it was not until the nineteenth century that the irrationals were separated into algebraic and transcendental parts, and a scientific study of theory of irrationals was taken once more. It had remained almost dormant since Euclid. The year 1872 saw the publication of the theories of Karl Weierstrass (by his pupil Kossak), Heine (Crelle, 74), Georg Cantor (Annalen, 5), and Richard Dedekind. Méray had taken in 1869 the same point of departure as Heine, but the theory is generally referred to the year 1872. Weierstrass's method has been completely set forth by Pincherle (1880), and Dedekind's has received additional prominence through the author's later work (1888) and the recent endorsement by Paul Tannery (1894). Weierstrass, Cantor, and Heine base their theories on infinite series, while Dedekind founds his on the idea of a cut (Schnitt) in the system of real numbers, separating all rational numbers into two groups having certain characteristic properties. The subject has received later contributions at the hands of Weierstrass, Kronecker (Crelle, 101), and Méray.

Continued fractions, closely related to irrational numbers (and due to Cataldi, 1613), received attention at the hands of Euler, and at the opening of the nineteenth century were brought into prominence through the writings of Joseph Louis Lagrange. Other noteworthy contributions have been made by Druckenmüller (1837), Kunze (1857), Lemke (1870), and Günther (1872). Ramus (1855) first connected the subject with determinants, resulting, with the subsequent contributions of Heine, Möbius, and Günther, in the theory of Kettenbruchdeterminanten. Dirichlet also added to the general theory, as have numerous contributors to the applications of the subject.

[编辑] 超越數和實數

The first results concerning transcendental numbers were Lambert's 1761 proof that π cannot be rational, and also that en is irrational if n is rational (unless n = 0). (The constant e was first referred to in Napier's 1618 work on logarithms.) Legendre extended this proof to showed that π is not the square root of a rational number. The search for roots of quintic and higher degree equations was an important development, the Abel–Ruffini theorem (Ruffini 1799, Abel 1824) showed that they could not be solved by radicals (formula involving only arithmetical operations and roots). Hence it was necessary to consider the wider set of algebraic numbers (all solutions to polynomial equations). Galois (1832) linked polynomial equations to group theory giving rise to the field of Galois theory.

Even the set of algebraic numbers was not sufficient and the full set of real number includes transcendental numbers. The existence of which was first established by Liouville (1844, 1851). Hermite proved in 1873 that e is transcendental and Lindemann proved in 1882 that π is transcendental. Finally Cantor shows that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite, so there is an uncountably infinite number of transcendental numbers.

[编辑] 無限

更多資料:[[History of infinity]]

The earliest known conception of mathematical infinity appears in the Yajur Veda, which at one point states "if you remove a part from infinity or add a part to infinity, still what remains is infinity". Infinity was a popular topic of philosophical study among the Jain mathematicians circa 400 BC. They distinguished between five types of infinity: infinite in one and two directions, infinite in area, infinite everywhere, and infinite perpetually.

In the West, the traditional notion of mathematical infinity was defined by Aristotle, who distinguished between actual infinity and potential infinity; the general consensus being that only the latter had true value. Galileo's Two New Sciences discussed the idea of one-to-one correspondences between infinite sets. But the next major advance in the theory was made by Georg Cantor; in 1895 he published a book about his new set theory, introducing, among other things, the continuum hypothesis.

A modern geometrical version of infinity is given by projective geometry, which introduces "ideal points at infinity," one for each spatial direction. Each family of parallel lines in a given direction is postulated to converge to the corresponding ideal point. This is closely related to the idea of vanishing points in perspective drawing.

[编辑] 複數

更多資料:[[History of complex numbers]]

最早但短暫論及負數平方根的是在西元一世紀希臘數學家和發明家希羅的工作中,當他在思考一金字塔可能的平截頭體體積時。複數在西元十六世紀開始變得很顯著,因為義大利數學家(見塔塔利亞和卡爾達諾)所發現三次及四次多項式的公式解。這一公式很快就被知道,而即使只注意實數解的部份,有時也會有需要操作負數平方根的時候。

這使人感到雙倍的不安,因為當時連負數都不被認為是很牢固的了。虛(imaginary)這一詞因此在1637年被笛卡爾創造出來,並且帶有些許貶義(參考虛數中討論複數真實性的部份)。更令人困惑的來源是等式\sqrt{-1}^2=\sqrt{-1}\sqrt{-1}=-1似乎任性地不和代數恆等式\sqrt{a}\sqrt{b}=\sqrt{ab}相合,而這一代數恆等式卻是在ab都是正數時成立,而且也在ab一正一負時可以被使用在複數計算上。這一恆等式(和另一相關的恆等式\frac{1}{\sqrt{a}}=\sqrt{\frac{1}{a}})在ab皆為負數時的錯誤使用甚至使得萊昂哈德·歐拉感到迷惑。這一困難最終導致他使用一特別的符號i來取代\sqrt{-1}來警惕此一錯誤。

觀看十八世紀時亞伯拉罕·棣·美弗萊昂哈德·歐拉的工作。棣美弗於西元1730年完成了以他為名的著名公式,棣美弗定理

(\cos \theta + i\sin \theta)^{n} = \cos n \theta + i\sin n \theta \,

而歐拉則在西元1748元完成複數分析中的歐拉公式

\cos \theta + i\sin \theta = e ^{i\theta }. \,

複數的存在在西元1799年由卡斯帕爾·韋塞爾提出了幾何解釋之前都沒有被完全地接受,這一解釋在幾年後被高斯重新發現並普及,結果使複數理論得到了顯要的擴張。複數圖像表示的概念早在1685年便在沃利斯De Algebra tractatus一書中提及。

也是在1799年,高斯提出了第一個廣為人接受的代數基本定理證明,表示任一複數係數多項都有完全的複數解。複數理論被廣泛地接受,奧古斯丁·路易·柯西尼爾斯·阿貝爾的工作也佔了很大的功勞,尤其是後者,他是第一個大膽成功使用複數的人。

高斯研究過高斯整數(a + bi中的ab是整數或有理數)。而其學生費迪南·艾森斯坦則研究過a + bω中的ω是x3 − 1 = 0複數根的類型。其他種類的複數還有由較大k值的單位根xk − 1 = 0推出的類型。其普遍化大部份歸功於恩斯特‧庫默爾的工作,他也引進了理想數的概念,它在1893年被菲利克斯·克萊因表示成幾何實體。體的一般理論由埃瓦裡斯特·伽羅瓦創造出來,他主要在研究由多項式方程F(x) = 0產生出來的體。

西元1850年,皮瑟成功地把極點(pole)和分支點(branch point)區別出來,而且引起了數學奇點的概念,這一概念最終導致出了黎曼球的概念。

[编辑] 質數

Prime numbers have been studied throughout recorded history. Euclid devoted one book of the Elements to the theory of primes; in it he proved the infinitude of the primes and the fundamental theorem of arithmetic, and presented the Euclidean algorithm for finding the greatest common divisor of two numbers.

In 240 BC, Eratosthenes used the Sieve of Eratosthenes to quickly isolate prime numbers. But most further development of the theory of primes in Europe dates to the Renaissance and later eras.

In 1796, Adrien-Marie Legendre conjectured the prime number theorem, describing the asymptotic distribution of primes. Other results concerning the distribution of the primes include Euler's proof that the sum of the reciprocals of the primes diverges, and the Goldbach conjecture which claims that any sufficiently large even number is the sum of two primes. Yet another conjecture related to the distribution of prime numbers is the Riemann hypothesis, formulated by Bernhard Riemann in 1859. The prime number theorem was finally proved by Jacques Hadamard and Charles de la Vallée-Poussin in 1896.

[编辑] 另見

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com