Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Преобразование Фурье — Википедия

Преобразование Фурье

Материал из Википедии — свободной энциклопедии

Преобразование Фурье — преобразование функции, превращающее её в совокупность частотных составляющих. Более точно, преобразование Фурье — это интегральное преобразование, которое раскладывает исходную функцию на базисные функции, в качестве которых выступают синусоидальные функции, то есть представляет исходную функцию в виде интеграла синусоид различной частоты, амплитуды и фазы. Преобразование названо по имени Жана Фурье.

Существует множество тесно связанных разновидностей этого преобразования, которые будут приведены ниже.

Содержание

[править] Применения преобразования Фурье

Преобразование Фурье используется во многих областях науки — в физике, теории чисел, комбинаторике, обработке сигналов, теории вероятности, статистике, криптографии, акустике, океанологии, оптике, геометрии, и многих других. (В обработке сигналов и связанных областях преобразование Фурье обычно рассматривается как декомпозиция сигнала на частоты и амплитуды.) Богатые возможности применения основываются на нескольких полезных свойствах преобразования:

  • Преобразования являются линейными операторами и, с соответствующей нормализацией, также являются унитарными (свойство, известное как теорема Парсеваля или, в более общем случае как теорема Планшереля, или в наиболее общем как дуализм Понтрягина).
  • Преобразования обратимы, причем обратное преобразование имеет практически такую же форму, как и прямое преобразование.
  • Синусоидальные базисные функции являются собственными функциями дифференцирования, что означает, что данное представление превращает линейные дифференциальные уравнения с постоянными коэффициентами в обычные алгебраические. (Например, в линейной стационарной системе частота — консервативная величина, поэтому поведение на каждой частоте может решаться независимо.)
  • По теореме о свёртке, преобразование Фурье превращает сложную операцию свертки в простое умножение, что означает, что они обеспечивают эффективный способ вычисления основанных на свёртке операций, таких как умножение многочленов и умножение больших чисел.

[править] Разновидности преобразования Фурье

[править] Непрерывное преобразование Фурье

Наиболее часто термин «преобразование Фурье» используют для обозначения непрерывного преобразования Фурье, представляющего любую квадратично-интегрируемую функцию f(t) как сумму (интеграл Фурье) комплексных показательных функций с угловыми частотами ω и комплексными амплитудами F(\omega)= \mathcal{F}(f)(t). Преобразование имеет несколько форм, отличающихся постоянными коэффициентами.

F_1(\nu) = \int\limits_{-\infty}^{+\infty} f(\tau) e^{-2\pi i\nu t}\,d\tau
F_2(\omega) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} f(\tau) e^{-i\omega t}\,d\tau=\frac{1}{\sqrt{2\pi}} F_1\left(\frac{\omega}{2\pi}\right)
F_3(\omega) = \int\limits_{-\infty}^{+\infty} f(\tau) e^{-i\omega t}\,d\tau=F_1\left(\frac{\omega}{2\pi}\right)
(ω=2π ν)

В разных областях науки и техники могут преобладать различные формы (поэтому иногда надо уточнять определение).

См. непрерывное преобразование Фурье для дополнительной информации, включая таблицу преобразований, обсуждение свойств преобразования и разнообразные соглашения. Обобщенным случаем такого преобразования является дробное преобразование Фурье, посредством которого преобразование можно возвести в любую вещественную «степень».

[править] Ряды Фурье

Непрерывное преобразование само фактически является обобщением более ранней идеи рядов Фурье, которые определены для периодических функций или функций, существующих на ограниченной области f(x) (с периодом 2π), и представляют эти функции как ряды синусоид:

f(x) = \sum_{n=-\infty}^{\infty} F_n \,e^{inx} ,

где Fn — комплексная амплитуда. Или, для вещественнo-значных функций, ряд Фурье часто записывается как:

f(x) = \frac{1}{2}a_0 + \sum_{n=1}^\infty\left[a_n\cos(nx)+b_n\sin(nx)\right],

где an и bn — (действительные) амплитуды ряда Фурье.

[править] Дискретное преобразование Фурье

Для использования в компьютерах, как для научных расчетов, так и для цифровой обработки сигналов, необходимо иметь функции xk, которые определены на дискретном множестве точек вместо непрерывной области, снова периодическом или ограниченном. В этом случае используется дискретное преобразование Фурье (DFT), которое представляет xk как сумму синусоид:

x_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j e^{2\pi ijk/n} \quad \quad k = 0,\dots,n-1

где fj — амплитуды Фурье. Хотя непосредственное применение этой формулы требует O(n²) операций, этот расчет может быть сделан за O(n log n) операций используя алгоритм быстрого преобразования Фурье (БПФ, FFT) (см. O-большое), что делает преобразование Фурье практически важной операцией на компьютере.

[править] Оконное преобразование Фурье

Классическое преобразование Фурье имеет дело со спектром сигнала, взятым во всем диапазоне существования переменной. Нередко интерес представляет только локальное распределение частот, в то время как требуется сохранить изначальную переменную (обычно время). В этом случае используется обобщение преобразования Фурье, так называемое оконное преобразование Фурье. Для начала необходимо выбрать некоторую оконную функцию:

F(t,\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty f(\tau) W(\tau-t) e^{-i\omega \tau}\,d\tau,

где F(t,ω) дает распределение частот части оригинального сигнала f(t) в окрестности времени t.

[править] Другие варианты

Дискретное преобразование Фурье является частным случаем (и иногда применяется для аппроксимации) дискретного во времени преобразования Фурье (DTFT), в котором xk определены на дискретных, но бесконечных областях, и таким образом спектр является непрерывным и периодическим. Дискретное во времени преобразование Фурье является по существу обратным для рядов Фурье.

Эти разновидности преобразования Фурье могут быть обобщены на преобразования Фурье произвольных локально сжатых абелевых топологических групп, которые изучаются в гармоническом анализе; они преобразуют группу в ее дуальную группу. Эта трактовка также позволяет сформулировать теорему свёртки, которая устанавливает связь между преобразованиями Фурье и свёртками. См. также дуализм Понтрягина для обобщенных обоснований преобразования Фурье.

[править] Интерпретация в терминах времени и частоты

В терминах обработки сигналов, преобразование берет представление функции сигнала в виде временных рядов и отображает его в частотный спектр, где ω — угловая частота. То есть оно превращает функцию времени в функцию частоты; это разложение функции на гармонические составляющие на различных частотах.

Когда функция f является функцией времени и представляет физический сигнал, преобразование имеет стандартную интерпретацию как спектр сигнала. Абсолютная величина получающейся в результате комплексной функции F представляет амплитуды соответствующих частот (ω), в то время как фазовые сдвиги получаются как аргумент этой комплексной функции.

Однако важно осознавать, что преобразования Фурье не ограничиваются функциями времени и временными частотами. Они могут в равной степени применяться для анализа пространственных частот, также как для практически любых других функций.

[править] Таблица важных преобразований Фурье

Следующая таблица содержит список важных формул для преобразования Фурье F(ω) и G(ω) обозначают фурье компоненты функций f(t) and g(t), соответственно. f и g должны быть интегрируемыми функциями или обобщенными функциями. Помните, что соотношения в этой таблице и в особенности множители такие как \sqrt{2\pi}, зависит от соглашения какая форма определения для Фурье преобразования использовалась прежде (хотя в общем виде соотношения конечно правильны).


  Функция Образ Примечания
1 a f(t) + b g(t)\, a F(\omega) + b G(\omega)\, Линейность
2 f(t - a)\, e^{- i\omega a} F(\omega)\, Запаздывание
3 e^{ iat} f(t)\, F(\omega - a)\, Частотный сдвиг
4 f(a t)\, |a|^{-1} F \left( \frac{\omega}{a} \right)\, Если a\, большое, то f(a t)\, сосредоточена около 0 и |a|^{-1}F(\frac{\omega}{a})\, становится плоским
5 \frac{d^n f(t)}{dt^n}\, (i\omega)^n  F(\omega)\, Свойство преобразования Фурье от n-ой производной
6 t^n f(t)\, i^n \frac{d^n F(\omega)}{d\omega^n}\, Это обращение правила 5
7 (f * g)(t)\, \sqrt{2\pi} F(\omega) G(\omega)\, Запись f * g\, означает свёртку f\, и g\, — это правило теорема о свёртке
8 f(t) g(t)\, (F * G)(\omega) \over \sqrt{2\pi}\, Это обращение 7
9 \delta(t)\, \frac{1}{\sqrt{2\pi}}\, \delta(t)\, означает дельта-функцию Дирака
10 1\, \sqrt{2\pi}\delta(\omega)\, Обращение 9.
11 t^n\, i^n \sqrt{2\pi} \delta^{(n)} (\omega)\, Здесь, n\, натуральное число. \delta^n(\omega)\,n-тая обобщённая производная дельта-функции Дирака. следствие правил 6 и 10. Использование его вместе с правилом 1, позволяет делать преобразования любых многочленов
12 e^{i a t}\, \sqrt{2 \pi} \delta(\omega - a)\, Следствие 3 и 10
13 \cos (a t)\, \sqrt{2 \pi} \frac{\delta(\omega - a) + \delta(\omega + a)}{2}\, Следствие 1 и 12 с использованием формулы Эйлера \cos(a t) = \frac{1}{2} \left( e^{i a t} + e^{-i a t}\right)\,
14 \sin( at)\, \sqrt{2 \pi}\frac{\delta(\omega - a) - \delta(\omega + a)}{2i}\, Также из 1 и 12
15 \exp(-a t^2)\, \frac{1}{\sqrt{2a}} \exp\left(\frac{-\omega^2}{4a}\right)\, показывает, что функция Гаусса \exp(-t^2/2)\, совпадает со своим изображением
16 W \sqrt{\frac{2}{\pi}} \mathrm{sinc}(W t)\, \mathrm{rect}\left(\frac{\omega}{2 W}\right)\, Прямоугольная функция — идеальный фильтр низких частот и sinc функция её временной эквивалент
17 \frac{1}{t}\, -i\sqrt{\frac{\pi}{2}}\sgn(\omega)\, Здесь \sgn(\omega)\,sign функция; заметим. что это правило в согласии с 6 и 10
18 \frac{1}{t^n}\, -i\sqrt{\frac{\pi}{2}}\frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega)\, Обобщение 17
19 \sgn(t)\, \sqrt{\frac{2}{\pi}}(i\omega)^{-1}\, Обращение 17
20 \sqrt{2\pi}\mathrm{H}(t)\, \frac{1}{i\omega} + \pi\delta(\omega)\, Здесь \mathrm{H}(t)\,функция Хевисайда; следует из правил 1 и 19

[править] Литература

Smith, Steven W. The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd edition. San Diego: California Technical Publishing, 1999. ISBN 0-9660176-3-3. (также доступна в Сети: [1])

[править] См. также

[править] Ссылки


Интегральные преобразования
Преобразование Абеля | Преобразования Бесселя | Преобразование Бушмана | Преобразование Ганкеля | Преобразование Гильберта | Преобразование Конторовича—Лебедева | Преобразование Лапласа | Преобразование Мейера | Преобразование Мелера-Фока | Преобразование Меллина | Преобразование Нерейна | Преобразование Радона | Преобразование Стильтьеса | Преобразование Фурье | Преобразование Хартли
 
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com