CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Théorie naïve des ensembles - Wikipédia

Théorie naïve des ensembles

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

Les ensembles sont d'une importance fondamentale en mathématiques; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Plusieurs théories des ensembles ont été développées, dont la théorie naïve des ensembles.


Sommaire

[modifier] Présentation

La plus ancienne des théories des ensembles, appelée théorie naïve des ensembles, est encore en usage aujourd'hui en raison de sa relative simplicité. Son nom a peut-être été emprunté au livre de Paul Halmos : Naive Set Theory. Elle a été développée à la fin du XIXe siècle, principalement par Georg Cantor et Frege, pour permettre aux mathématiciens de travailler avec des ensembles infinis cohérents.

Elle permettait cependant de faire n'importe quelle opération sur les ensembles sans aucune restriction, ce qui a mené à des antinomies, ou paradoxes logiques, tel le paradoxe de Russell (voir ci-dessous). La théorie axiomatique des ensembles a été développée en réponse, pour déterminer précisément quelles opérations pouvaient être autorisées et dans quelles conditions. Aujourd'hui, pour les chercheurs en mathématiques, « théorie des ensembles » signifie usuellement théorie axiomatique des ensembles. Toutefois, cette théorie, aux multiples variantes, se présente généralement comme une extension de la logique des prédicats, et ne peut de ce fait être située au début des mathématiques, même si toutes les notions mathématiques peuvent être formalisées dans son cadre.

En revanche, il est utile d'étudier « naïvement » les ensembles, sans excès de formalisme, pour apprendre à les manipuler, car ils interviennent à peu près dans tous les domaines des mathématiques. On peut d'ailleurs dire que le langage de la théorie des ensembles constitue un esperanto des mathématiques. De plus, une bonne compréhension de la théorie naïve est importante comme première approche de la théorie axiomatique.

La théorie naïve des ensembles se distingue de la théorie axiomatique en premier lieu par le fait qu'elle n'explicite pas systématiquement ses axiomes, étant ainsi comparable aux exposés élémentaires de géométrie. Elle s'en distingue surtout par le fait qu'elle traite directement d' éléments qu'elle rassemble en collections appelées ensembles, alors que la théorie axiomatique traite d'un langage-objet, permettant de parler des ensembles. Ceux-ci ne sont donc traités qu'indirectement par la théorie axiomatique, au travers du langage-objet.

[modifier] Organisation de la théorie

La théorie naïve des ensembles s'organise de la façon suivante :

Notion d'ensemble

  • Ensemble, élément et appartenance
  • Égalité de deux ensembles
  • Paires et singletons
  • Définition d'un ensemble en extension
  • Définition d'un ensemble en compréhension

Sous-ensembles

  • Ensemble vide
  • Ensemble universel
  • Inclusion. Sous-ensembles et sur-ensembles
  • Inclusion large et inclusion stricte. Sous-ensembles propres
  • Ensemble des parties

Opérations sur les ensembles

  • Réunion
  • Intersection
  • Différence. Compléments absolu et relatif
  • Différence symétrique

Couple et produit cartésien

  • Notion de couple
  • Produit cartésien de deux ensembles. Carré cartésien
  • n-uplets. Produit cartésien généralisé. Puissances cartésiennes
  • Somme disjointe de deux ensembles

Correspondances et Relations

  • Notion de correspondance
  • Propriétés des correspondances. Notion de fonction
  • Relations binaires
  • Relations ternaires. Lois de composition

Première approche des cardinaux

  • Relation binaire d'équipotence
  • Notion de cardinal

Ces articles présentent la théorie naïve. Nous définissons d'abord les ensembles de manière informelle et nous donnons ensuite quelques propriétés. Les liens dans ces articles vers certains axiomes ne servent pas à justifier chaque énoncé, mais plutôt à souligner le parallèle qui peut être établi entre les théories naïve et formelle. Pour la signification des symboles logiques utilisés dans les énoncés en notation symbolique, on peut se référer à l'article Calcul des prédicats.

[modifier] Paradoxe de Russell et conséquences

Le mathématicien Bertrand Russell proposa en 1901 de considérer l'ensemble des ensembles qui ne sont pas éléments d'eux-mêmes.

Soit M cet ensemble. Formellement, A est un élément de M si et seulement si A n'est pas un élément de lui-même.

Faisons l'hypothèse que M se contient lui-même, autrement dit que M est un élément de M. Cela est contradictoire avec la définition de M. On en déduit que M ne se contient pas lui-même. Mais dans ce cas, M est un ensemble qui n'est pas élément de lui-même et devrait à ce titre faire partie de M. Ainsi naît le paradoxe.

Il montre que la théorie des ensembles au sens de Cantor est une théorie contradictoire. La racine du problème vient de ce que nous avons accepté que n'importe quelle propriété puisse être utilisée pour construire les ensembles. Or certaines de ces propriétés ( et c'est précisément le cas dans le paradoxe de Russell ) génèrent des boucles autoréférentielles instables (autrement dit des "cercles vicieux") et devraient donc être exclues.

La théorie axiomatique des ensembles pose des restrictions sur les types d'ensembles dont la construction est autorisée et évite ainsi les problèmes comme ceux de l'ensemble des ensembles qui ne se contiennent pas eux-mêmes.

La contrepartie de l'élimination des paradoxes est un développement beaucoup plus difficile. En particulier, il est problématique de parler d'un « ensemble de tout » ou, pour être un peu moins ambitieux, d'un « ensemble de tous les ensembles ». De fait, dans l'axiomatisation standard de la théorie des ensembles, il n'existe pas d'ensemble de tous les ensembles.

Dans les domaines mathématiques qui semblent nécessiter malgré tout un « ensemble de tous les ensembles » (comme la théorie des catégories), on peut parfois utiliser un ensemble universel suffisamment grand pour que toutes les mathématiques usuelles puissent être construites ( voir l'article « sous-ensemble » ).

Cependant, nous pouvons recourir à une théorie des ensembles autorisant les classes. Dans ces théories, il existe une classe de tous les ensembles, ainsi qu'une classe de tous les ensembles qui ne se contiennent pas eux-mêmes. Comme ces classes ne sont pas des ensembles, les paradoxes tels que celui de Russell sont évités.

Un autre recours consiste à utiliser une axiomatique différente de la théorie des ensembles, comme dans les nouveaux fondements (New Foundations) de W. V. Quine, qui permettent de définir un ensemble de tous les ensembles tout en évitant le paradoxe de Russell d'une autre manière. Le problème est résolu d'une autre façon, mais cela donne rarement une différence finale avec la théorie classique.

[modifier] Voir aussi

[modifier] Liens externes

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com