CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Théorie des catégories - Wikipédia

Théorie des catégories

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

La théorie des catégories a pour vocation d'étudier les structures mathématiques et les relations entre celles-ci, abstraction faite des objets qui possèdent ces structures. Elle a été introduite en 1945 par Samuel Eilenberg et Saunders MacLane.

Cette théorie est souvent considérée comme très (voire trop) abstraite mais constitue néanmoins une branche importante des mathématiques contemporaines.

Sommaire

[modifier] Définition

Une catégorie \mathcal C est la donnée :

  • d'une collection, dont les éléments sont appelés objets,
  • d'une collection Hom(A,B), pour chaque paire d'objets A et B, dont les éléments f sont appelés morphismes (ou flèches) entre A et B, et sont parfois notés f:A\to B,
  • d'un morphisme \mathrm{id}_A:A\to A, pour chaque objet A, appelé identité sur A,
  • d'un morphisme g\circ f:A\to C pour toute paire de morphisme f:A\to B et g:B\to C, appelé composée de f et g,

qui sont tels que

  • la composition est associative : pour tous morphismes f:A\to B, g:B\to C et h:C\to D,
(h\circ g)\circ f=h\circ(g\circ f),
  • les identités sont des éléments neutres de la composition : pour tout morphisme f:A\to B,
\mathrm{id}_B\circ f=f=f\circ\mathrm{id}_{A}.

Lorsqu'une catégorie est courante, certains lui donnent comme nom l'abréviation du nom de ses objets, entre parenthèses pour signaler qu'il s'agit de leur catégorie ; nous suivrons ici cette convention.

[modifier] Exemples

  • La catégorie \mathcal(Ens), dont les objets sont les ensembles, et les flèches les applications, avec la composition usuelle des applications. En particulier, on voit que les objets d'une catégorie ne forment pas forcément un ensemble !
  • La catégorie \mathcal (Top), dont les objets sont les espaces topologiques, et les flèches les applications continues, avec la composition usuelle.
  • La catégorie \mathcal(Met), dont les objets sont les espaces métriques, et les flèches les applications uniformément continues, avec la composition usuelle.
  • La catégorie \mathcal(Mon), dont les objets sont les monoïdes et les flèches les morphismes, avec la composition usuelle.
  • La catégorie \mathcal(Grp), dont les objets sont les groupes et les flèches les morphismes, avec la composition usuelle.
  • La catégorie \mathcal(Ab), dont les objets sont les groupes abéliens et les flèches les morphismes, avec la composition usuelle.
  • La catégorie \mathcal(ACU), dont les objets sont les anneaux commutatifs unitaires et les flèches les morphismes, avec la composition usuelle.

Les exemples précédents ont une propriété en commun : les flèches sont toujours des applications, et les objets des ensembles (ce sont des catégories concrètes) ; cette propriété est très particulière. Voici des exemples de catégories sans cette propriété :

  • On se donne un monoïde (M,*,e)\,, et on définit la catégorie M\, ainsi :
  • objets : un seul ( peu importe lequel )
  • flèches : les éléments du monoïde, elles partent toute de l'unique objet pour y revenir ;
  • composition : donnée par la loi du monoïde (l'identité est donc la flèche associée à e\,).
  • objets : les éléments de l'ensemble ;
  • flèches : pour tous objets e\, et f\,, il existe une flèche de e\, vers f\, si et seulement si eRf\, (et pas de flèche sinon) ;
  • composition : la composée de deux flèches est la seule flèche qui réunit les deux extrémités (la relation est transitive !) ; l'identité est la seule flèche qui relie un objet à lui-même (la relation est réflexive !).
Cet exemple est particulièrement intéressant dans le cas suivant : l'ensemble est l'ensemble des ouverts d'un espace topologique, et la relation est l'inclusion ; cela permet de définir les notions de préfaisceau et de faisceau, via les foncteurs.

[modifier] Catégorie duale

À partir d'une catégorie \mathcal C, on peut définir une autre catégorie \mathcal C^{op}, dite opposée ou duale, en prenant les mêmes objets, mais en inversant le sens des flèches.

Plus précisément : Hom_{\mathcal C^{op}}(A,B)=Hom_{\mathcal C}(B,A), et la composition de deux flèches opposées est l'opposée de leur composition :

f^{op}\circ g^{op}=(g\circ f)^{op}

Il est clair que la catégorie duale de la catégorie duale est la catégorie de départ : (\mathcal C^{op})^{op}=\mathcal C.

Cette opération de dualisation extrêmement simple permet néanmoins de symétriser la plupart des énoncés, ce qui est parfois douloureux pour les débutants...

[modifier] Propriétés des flèches

[modifier] Définitions

Une flèche f:A\rightarrow B est dite un monomorphisme lorsqu'elle vérifie la propriété suivante : pour tout couple g,h\, de flèches E\rightarrow A (et donc aussi pour tout E\,), si f\circ g=f\circ h, alors g=h\,.

Une flèche f:A\rightarrow B est dite un épimorphisme lorsqu'elle vérifie la propriété suivante : pour tout couple g,h\, de flèches B\rightarrow E (et donc aussi pour tout E\,), si g\circ f=h\circ f, alors g=h\,.

Les notions de monomorphisme et d'épimorphisme sont duales l'une de l'autre : une flèche est un monomorphisme si et seulement si elle est un épimorphisme dans la catégorie duale.

Une flèche f:A\rightarrow B est dite un isomorphisme s'il existe une flèche g:B\rightarrow A telle que g\circ f=I_A et f\circ g=I_B. Cette notion est autoduale.

[modifier] Exemples

  • Dans la catégorie des ensembles, les monomorphismes sont les injections, les épimorphismes sont les surjections et les isomorphismes sont les bijections.
  • Un contre-exemple important en théorie des catégories : un morphisme peut à la fois être un monomorphisme et un épimorphisme, sans être pour autant un isomorphisme ; pour voir ce contre-exemple, il faut se placer dans la catégorie des anneaux commutatifs unitaires, et considérer la flèche (unique!) \mathbb Z\rightarrow\mathbb Q : elle est un monomorphisme car provient d'une application injective, un épimorphisme par localisation, mais n'est clairement pas un isomorphisme!
  • On trouve aussi de tels épimorphisme-monomorphisme non-isomorphiques dans la catégories des espaces topologiques : toute injection y est un monomorphisme, toute surjection est un épimorphisme, les isomorphismes sont les homéomorphismes, mais il y a des fonctions continues à la fois injectives et surjectives qui ne sont pas des homéomorphismes : par exemple l'identité sur un ensemble muni de deux topologies différentes, l'une plus grossière que l'autre.

[modifier] Propriétés des objets

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com