CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Nombre d'Avogadro - Wikipédia

Nombre d'Avogadro

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

Cet article est lié au :
Portail Science
Disciplines scientifiques
Méthode scientifique
Recherche scientifique
Sciences de la nature
Biologie, Chimie, Physique, Sciences de la Terre, ...
Sciences humaines
Anthropologie, Économique, Linguistique, Psychologie, Sociologie, ...
Sciences formelles
Algèbre, Géométrie, Informatique, Logique, Topologie, ...
Méta
Page projet
modifier

Le nombre d'Avogadro (en hommage à Amedeo Avogadro), noté NA, est le nombre d'éléments dans une mole. Il correspond au nombre d'atomes de Carbone-12 dans 0,012 kg (soit 12 grammes, unité utilisée en chimie) de Carbone-12.

Il s'agit d'un nombre choisi arbitrairement pour représenter les grandes quantités, notamment le nombre d'atomes ou de molécules présents dans quelques grammes de matière. Son utilisation n'est donc pas limitée au carbone-12, mais peut s'appliquer à tous les systèmes.

Le choix est arbitraire, mais il permet de calculer de manière simple la quantité de matière en fonction de la masse et de la formule brute d'un composé. Pour les éléments, la masse de NA atomes est à peu près égale au nombre de nucléons dans le noyau (protons et neutrons).

Ce nombre d'atomes constitue une mole. Par exemple, la masse atomique du fer étant de 55,845 u.a. (g.mol-1), on en déduit qu'une mole d'atomes de fer a une masse de 55,845 g. De même, 55,845 g de fer contiennent NA atomes de fer.

Permettant de mettre en relation la masse à la quantité d'atomes, ce nombre est la référence pour la quantité de matière.

Ce nombre correspond également au facteur de conversion entre le gramme et l'unité de masse atomique (u) :

1 g = NA u

Sommaire

[modifier] Valeur numérique

La valeur exacte du nombre d'Avogadro ne peut pas être connue avec les moyens techniques actuels. La valeur approchée utilisée jusqu'alors était :

N_A \simeq 6,02214199 \times 10^{23} \rm {mol}^{-1}

En 2003, une équipe de chercheurs de l'Office fédéral allemand de métrologie de Brunswick a déterminé une nouvelle valeur de la constante :

N_A \simeq 6,0221353 \times 10^{23} \rm {mol}^{-1}

(cf. Determination of the Avogadro constant via the silicon route, Metrologia 40)

[modifier] Autre utilisation

[modifier] Histoire du nombre d'Avogadro

[modifier] Une conséquence du positivisme

Cela est dû aux circonstances particulières de la philosophie scientifique de l'époque : le positivisme interdisait les « hypothèses » non démontrées, ou non démontrables. Il valait mieux faire une théorie qui s'en passe.

Cela est dû aussi à l'incompréhension de la liaison covalente (réellement comprise par Heitler et London seulement en 1927, grâce à la mécanique quantique(1926)). La théorie ionique de Berzélius ne permettait pas l'existence du dihydrogène ou du dioxygène.

De ce fait, le langage hésite : avant de comprendre qu'une molécule est composée d'atomes, et pourquoi H2 plutôt que H4, et pourquoi NO2 plutôt que N2O4, il faut du temps pour amasser suffisamment de données compatibles, et écarter les « inclassables » (par exemple, les berthollides).

Au début du XIXe siècle, Avogadro énonça sa loi (1811). Ampère l'encouragea, 1814, mais il se rétracta devant la levée de boucliers des positivistes. La réaction des anti-atomistes (on disait les Équivalentistes) se durcit encore avec Dumas en 1836, puis Berthelot et Le Chatelier.

Le Congrès de Karlsruhe (1860) permit aux deux communautés d'enterrer la hache de guerre. Mais les jeunes chimistes en revinrent convertis à la théorie atomique par le rapport de Cannizzaro.

Il est alors acquis que dans un gaz dit parfait, le volume V0 occupé par N particules, sous la pression P0 et la température T0 est LE MEME quel que soit le gaz!

Il restait à mesurer ce nombre, ce qui n'était plus qu'une question de métrologie.

[modifier] L'intervention de Maxwell

Le premier texte important de théorie cinétique est celui du XVIIIe siècle de Daniel Bernoulli qui calcula correctement la pression cinétique (1738, Hydrodynamica). Mais ce document passa inaperçu.

Lorsque Loschmidt trouva la première valeur en ordre de grandeur : 1024, cela donnait aux atomes une taille de 0.1 nm. Et il fallut toute l'autorité de Maxwell pour que ces résultats fussent considérés comme crédibles. La théorie cinétique des gaz avait acquis « ses galons » (1870).

[modifier] La mesure proprement dite

Elle n'a aucun intérêt en soi: le tableau de Mendeleïev décrivait les éléments et leur masse relative respective. Choisir tel ou tel élément comme référence est une convention, qui d'ailleurs a changé: il eût été naturel de choisir la masse d'une mole de protons égale à 1 gramme; mais à l'époque, on ne savait même pas que l'atome était sécable. Or les nombres conventionnels comme les unités sont toujours faits non pour les théoriciens, mais pour les ingénieurs qui ont besoin de « certification ». Il fallait donc une mesure dont la traçabilité soit reconnue: le choix s'est fixé jusqu'à 2005, sur la définition: 12 grammes de C_(12) contiennent NA molécules.

Ce nombre est connu avec une mauvaise précision 1.7 10-7 et vaut : NA = 6.02201415(10) . 1023/mol

Dès que l'on saura compter les atomes en grande quantité via des écluses à atomes individuels, cette valeur s'améliorera. Pour l'instant, c'est toujours le résidu d'impuretés dans le silicium qui est source de problème.


[modifier] Pour en savoir plus

Il y a au fond 2 problèmes distincts :

  • la compréhension en chimie du fait que les molécules sont constituées d'atomes élémentaires et échangent ces atomes lors d'une réaction chimique pour donner d'autres molécules (de propriétés différentes).
  • le fait que ces « particules » (molécules ou atomes), dans un état gazeux dit parfait, occupent toutes le même volume moyen : soit 22.414 L sous une pression de 1.01325 10^5 Pa et une température de 273.15 K, pour le nombre de particules égal au nombre d'Avogadro : cette mesure relève plutôt de la physique.

Gassendi rénove la théorie atomique (1638) ; le premier théorème de théorie cinétique des gaz date de Daniel Bernoulli en 1738. Mais il sera oublié jusqu'à Clausius, vers 1855. La raison en est qu'il faut que la chimie se dépêtre de l'alchimie grâce à la balance.

[modifier] Atomes et Chimie

Il fallut extraire les corps purs des mélanges (piège des eutectiques et des azéotropes, piège des cristaux isomorphes) : après Wenzel (1782), Richter (1795), la querelle Berthollet-Proust (1799-1806), il devint admis qu'un corps pur est composé des mêmes corps simples dans les mêmes proportions discontinues et définies : eau et eau oxygénée sont deux corps purs différents. John Dalton(1808) propose la classification en corps binaire (A+B->AB), ternaire(A+2B->AB2), indiquant clairement sa vision atomique des molécules, et donne les masses relatives des « équivalents ». Berzélius proposera de nommer chaque élément par un symbole. Gay-Lussac établit pour les composés gazeux les lois des volumes en proportions définies(1809).

La difficulté était celle-ci : en eudiométrie, la décomposition de l'eau donne 2 volumes d'hydrogène et 1 volume d'oxygène. La recomposition de l'eau est que ces volumes ne redonnent que 2 volumes de vapeur d'eau :

Le pas immense que franchit Avogadro est d'admettre l'existence du dihydrogène et du dioxygène, qui devaient se décomposer pour donner deux molécules d'eau H_2O; ce qui permettait de résoudre les conflits entre Dalton et Gay-Lussac. Mais ces « décomposition » et recombinaison étaient en tout état de cause fort problématiques. Il est peu écouté : la théorie de Berzélius ne permet pas de rendre compte de l'existence de la « molécule » H_2.

Néanmoins Berzélius perfectionne la notion de masse relative des éléments (la loi de Dulong et Petit joue alors un rôle important (1819) ; la loi cristalline de Mitscherlich (1820) aussi).

Dumas, en 1826, est adepte convaincu du système atomique de Dalton, et permet par sa fameuse loi (d = M/29) de déterminer moult masses molaires). Mais convaincu par la philosophie positiviste, il rejette l'atomisme en 1836 : ses vapeurs de phosphore P_4, et de soufre S_6, puis graduellement S_2 l'ont, à l'évidence, contrarié.

Gmelin, anti-atomiste convaincu, ne fait toujours pas la différence entre atome et molécule et donne la Table des Equivalents (1830).

Faraday publie ses équivalents électrochimiques ioniques dans les lois de l'électrolyse (1833).

Conclusion : faute de comprendre H_2, P_4 et S_6 , la théorie atomique achoppe, malgré GAUDIN(1833), qui, sans succès, reprend Avogadro, et définit le dihydrogène, le tétraphosphore, etc. et distingue parfaitement entre MOLECULE, faite d'ATOMES éléments.

La CHIMIE ORGANIQUE (Wohler, synthèse de l'urée (1828)) et son omniprésente covalence, fait oublier Berzélius ; et Gerhardt (1843), puis Laurent(1846) redécouvrent ce qu'avait dit Gaudin. La thermochimie naissante des années 45 confirme : il faut briser H_2 et Cl_2 pour donner 2 HCl.

Restaient les étranges variations « graduelles ». Cannizzaro sauve la théorie atomique : il y a dissociation progressive. Sainte-Claire Deville confirme. On est en 1856.

Le congrès de Karlsruhe (1860) enterre la hache de guerre entre équivalentistes et atomistes ; mais clairement les atomistes seront avantagés dans leur compréhension de la chimie.

[modifier] Physiciens et la taille des atomes

La théorie du calorique de Black vient embourber la physique du XVIIIe. Mais en Angleterre, Joule (1848) redécouvre piètrement Bernoulli. Kronig (1856) améliore ; Clausius( 1857) vient enfin et trouve la vitesse quadratique moyenne u = sqrt(3. RT/M), soit 485m/s.sqrt(T/273).sqrt(29/M). Et il retrouve l'explication d'Avogadro, de Gaudin et autres : l'hydrogène est du dihydrogène ! Verdet le lui persifla.

La vitesse moyenne était très élevée ; mais Clausius invente la notion géométrique capitale de le libre parcours moyen L~1/nS, avec S=section efficace.

La théorie cinétique des gaz est née ; l'ordre de grandeur du coefficient de diffusion sera D=1/3.u.L en m^2/s, comme la viscosité cinématique. Loschmidt en tirera (1865) la valeur de la taille des atomes et le nombre d'Avogadro à la stupeur des physiciens, et W. Thomson-Lord Kelvin rassure la communauté (size of atoms ; Nature 1(1870),551-553) : assurément vrai. Il essaiera vainement de leur donner une structure de nœuds, mais non, ce sera en 1926, l'équation de Schrōdinger, puis les équations de Hartree-Fock qui donneront la solution actuelle.

Maxwell, avec ses visions prémonitoires de grand physicien, a déjà compris : pour qu'un véritable système d'unités international naisse, il conviendra de l'établir sur la base des atomes : à peine mesurée, la constante d'Avogadro n'a plus d'intérêt autre qu'anthropomorphique ; dans quelques décennies, il est probable qu'elle ne sera plus enseignée qu'en chimie ; un physicien peut très bien s'en passer ; pas un ingénieur, censé travailler pour l'Homme.

[modifier] Voir aussi


Portail de la physique – Accédez aux articles de Wikipédia concernant la physique.
Portail de la chimie – Accédez aux articles de Wikipédia concernant la chimie.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com