CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Théorie cinétique des gaz - Wikipédia

Théorie cinétique des gaz

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

La théorie cinétique des gaz considère que les gaz sont constitués de corpuscules (les molécules) en mouvement permanent. Elle permet d'expliquer les notions de :

  • température : c'est une mesure de l'agitation des corpuscules, plus précisément de leur énergie cinétique ;
  • pression : la pression exercée par une gaz sur une paroi résulte des chocs des corpuscules sur cette paroi.

La théorie cinétique des gaz a été développée à partir du XVIIIe siècle et a été un des éléments déterminants dans la découverte de la notion d'atome.

Cette théorie comporte plusieurs degrés de complexité. Dans sa version la plus simple, on ignore les interactions entre les molécules, ainsi que leur taille : elle permet de retrouver l'équation d'état (macroscopique) des "gaz parfaits". En incluant les effets de taille des molécules, on peut décrire les collisions entre les molécules, ce qui donne accès aux propriétés de transport (viscosité, diffusion, conductibilité thermique). Van der Waals a proposé en 1873 une équation qui porte son nom, et qui tient compte à la fois de la taille des molécules et de leur interaction. Il se trouve que cette équation permet de décrire également la transition liquide-gaz. Elle a servi de guide à ceux qui, dans la seconde moitié du XIXème siècle, cherchaient à liquéfier tous les gaz, jusqu'à l'hélium, liquéfié en 1908 à Leyde.

Sommaire

[modifier] Description

Un gaz est un ensemble de molécules mono- ou poly-atomiques subissant un certain nombre d’interactions : on aura notamment des interactions électromagnétiques (comme les forces de van der Waals) et des chocs entre les particules mais aussi contre les parois du récipient contenant le gaz. Dans le cadre de la théorie cinétique, on fait les approximations suivantes :

  • le volume des molécules est négligeable ;
  • seuls les chocs ont une influence, les autres interactions sont négligeables.

La trajectoire des molécules peut se modéliser avec le mouvement brownien.

Dans la suite,

  • P désignera la pression du gaz,
  • V son volume,
  • T sa température thermodynamique, et
  • n le nombre de molécules.

[modifier] Vitesse et pression

[modifier] Statistiques sur les vitesses

Considérons une molécule ayant une vitesse de norme v et frappant une surface. Elle subit un choc élastique, c'est-à-dire qu'elle repart en faisant un même angle avec la surface, avec une vitesse de même norme v. Si l'on choisit un repère orthonormé e1, e2, e3, avec e1 perpendiculaire à la surface, alors cette vitesse se décompose selon les trois axes

\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3

On appelle c(v) d3v le nombre de molécules par unité de volume (la concentration) dont la vitesse est comprise dans un volume infinitésimal d3v autour de la valeur v.

La concentration globale est donc :

C = \iiint c(\mathbf{v})\, d^3\mathbf{v} = \frac{n}{V}

La répartition statistique des vitesses étant isotrope, la moyenne des composantes de la vitesse est évidemment nulle :

\langle v_1\rangle = \langle v_2\rangle = \langle v_3\rangle = 0

Les moyennes quadratiques ne sont par contre pas nulles, et elles sont égales entre elles par symétrie de rotation. Comme on a toujours

v_1^2 + v_2^2 + v_3^2 = v^2

(théorème de Pythagore), on a en moyenne

\langle v_1^2\rangle  = \langle v_2^2\rangle  = \langle v_3^2\rangle  = \frac{1}{3}\langle v^2\rangle

avec

\langle v_i^2\rangle = \frac{1}{C} \iiint c(\mathbf{v}) \, v_i^2 \, d^3\mathbf{v}

et

\langle v^2\rangle = \frac{1}{C} \iiint c(\mathbf{v}) \, v^2 \, d^3\mathbf{v}

[modifier] Impact d'une molécule

Lorsqu'une molécule rebondit de manière élastique sur la surface, sa quantité de mouvement varie de

2\,m\,v_1

m étant la masse de la molécule. D'après les lois de Newton (principe fondamental de la dynamique et théorème des actions réciproques), l'intégrale en temps de la force qu'elle imprime sur la surface est donc

\int f_1 dt = 2 \,m \, v_1 .


[modifier] Impact de toutes les molécules

On cherche maintenant, v étant fixé à d3v près, à savoir combien de molécules frappent une petite surface d'aire S durant une durée τ.

Les molécules frappant la surface entre l'instant 0 et l'instant τ sont nécessairement dans un cylindre de base S et de hauteur v1τ — les autres molécules sont trop loin ou frappent à côté. Ce cylindre d'axe v a un volume de S v1 τ. La force d3F créée par toutes les molécules considérées est donc :

\int_0^\tau d^3F\, dt = 2  \,m \, v_1 \  S \, v_1 \, \tau \  c(\mathbf{v}) \, d^3\mathbf{v} .

La force F créée par toutes les molécules s'obtient en intégrant sur v1 > 0 si l'on oriente e1 du gaz vers l'extérieur (on ne considère que les molécules allant vers la surface, pas celles s'en éloignant). Ceci revient à diviser par deux, en raison de la symétrie de la distribution c(v) :

\int_0^\tau F dt = 2 \, m \,S \iiint_{v1>0}  v_1^2 \, \tau\,c(\mathbf{v}) \, d^3\mathbf{v} =  m \, \tau\,S \iiint v_1^2 \, c(\mathbf{v}) \, d^3\mathbf{v}

En négligeant les fluctuations dans le temps de F, on peut intégrer sur t et simplifier par τ :

F =  m \, S  \iiint v_1^2 \, c(\mathbf{v})\, d^3\mathbf{v} = m\, S\, C \langle v_1^2\rangle

ou

F =  \frac{1}{3} m\, S\, C \,\langle v^2\rangle

La pression étant la force divisée par la surface, on obtient

p = \frac{1}{3} m \, C \langle v^2\rangle

ou encore, par définition de C = n / V :

p \, V = \frac{1}{3} m \, n \,\langle v^2\rangle

[modifier] Pression et énergie cinétique

Si une molécule de masse m va à une vitesse v, son énergie cinétique vaut \frac{1}{2} m \, v^2 et l'énergie cinétique totale des molécules du gaz vaut

E_c = n \times \frac{1}{2} m \, \langle v^2\rangle = \frac{3}{2} p\,V


[modifier] Gaz parfait monoatomique

Dans le cas d'un gaz parfait monoatomique, on suppose que la totalité de l'énergie est sous forme d'énergie cinétique des molécules (énergie thermique), donc l'énergie interne U du système vaut :

U = Ec

On a donc

U = \frac{3}{2} p\,V

[modifier] Gaz parfait de Laplace

Dans le cas plus général du gaz parfait de Laplace, on suppose que les molécules ont une énergie interne de rotation ou d'oscillation, proportionnelle à Ec. Le nombre de degrés de liberté passe de 3 à ν et dans l'hypothèse d'équipartition, on a U = \frac{\nu}{3} E_c, et donc

U = \frac{\nu}{2} p\,V

En modifiant adiabatiquement le volume du gaz, on fournit un travail pdV égal à la variation d'énergie interne dU = \frac{\nu}{2} \left(V dp+ p dV\right). Donc on a 0 = \frac{\nu}{2} Vdp + \frac{2+\nu}{2} pdV ou 0 = \frac{dp}{p} + \frac{2+\nu}{\nu} \frac{dV}{V} = d\left(p V^{\frac{2+\nu}{\nu}} \right). Traditionnellement, pour retrouver la loi de Laplace du gaz parfait en régime adiabatique PVγ = Cte, on introduit

\gamma = \frac{2+\nu}{\nu}

Pour le gaz parfait de Laplace, on a donc

U = \frac{1}{\gamma - 1} P\,V
  • Pour un gaz réel monoatomique, ou même l'hydrogène à très basse température ν = 3 et \gamma  = \frac{5}{3}
  • Pour un gaz réel diatomique à température intermédiaire (azote, hydrogène, ozygène autour de 300 K), on a deux degrés de rotation possible \nu \approx 5 et \gamma \approx \frac{7}{5}
  • Pour un gaz réel diatomique à très haute température, l'oscillation longitudinale devient possible, et ν tend vers 7 et γ tend vers 97

[modifier] Articles connexes

[modifier] Bibliographie

  • Ludwig Boltzmann ; Leçons sur la théorie des gaz, Gauthier-Villars (1902-1905). Réédition Jacques Gabay (1987), ISBN 2-87647-004-7.
  • Carlo Cercignani ; Ludwig Boltzmann - The man who Trusted Atoms, Oxford University Press (1998) 330 pp. ISBN 0-19-850154-4. Biographie scientifique du grand professeur Boltzmann, qui a porté la théorie cinétique des gaz à son acmée. Par un professeur de Physique Mathématique de l'Université de Milan (Italie), spécialiste de l'équation de Boltzmann. Niveau plutôt second cycle universitaire.


Portail de la chimie – Accédez aux articles de Wikipédia concernant la chimie.
Portail de la physique – Accédez aux articles de Wikipédia concernant la physique.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com