Privacy Policy Cookie Policy Terms and Conditions Просте число - Вікіпедія

Просте число

Матеріал з Вікіпедії — вільної енциклопедії.

Зміст

[ред.] Загальні відомості

Просте число - натуральне_число p називається простим, якщо воно має рівно два дільники - 1 і само число p. Наприклад, числа 1, 4, 36 - не є простими, а 2, 3, 11 - прості. Найменшими простими числами є 2, 3, 5, 7, 11, 13, 17, 19, ... (дивись список простих чисел)

[ред.] Деякі факти про прості числа

[ред.] Розкладання в числа добуток простих чисел

Будь-яке натуральне число можна розкласти в добуток простих чисел, і цей розклад буде однозначним з точністю до порядку множників. Доведемо це.

Спочатку доведемо існування розкладу для будь-якого числа M. Число M або є простим (і, отже єдиним чином розкладається у добуток 1*M), або має якнайменше один дільник окрім 1 та M (назвемо цей дільник d). Додамо число d до списку дільників числа M, і продовжимо наш процес з числом M1 = M / d. Очевидно, що на кожному кроці нашого процесу число зменшується. Оскільки число M скінченне, то через скінченну кількість кроків ми отримаємо повний список простих дільників числа M.

Доведемо тепер однозначність розкладу (знову скористаємось методом від супротивного). Нехай існують два різних розклади M = P1*P2*...*PN та M = S1*S2*...*SK. Очевидно, має існувати множник Pi, який міститься в першому розкладі, але не міститься в другому. Оскільки Pi міститься в першому розкладі числа M, то число M має ділитись на Pi, а, отже, і добуток S1*S2*...*SK має ділитись на Pi. Оскільки Pi - просте, і не має інших дільників крім 1 і себе, то для того, щоб добуток S1*S2*...*SK ділився на Pi, то деякий множник Sj має ділитись на Pi. Оскільки Sj — просте число, що ділиться на Pi, то це означає, що Sj = Pi. Отже, Pi міститься у другому розкладі також, що суперечить нашому припущенню. Доведення закінчено.

[ред.] Нескінченна кількість простих чисел

Як було доведено грецьким математиком Евклідом, існує нескінченна кількість простих чисел. Евклід використав метод доведення від супротивного. Припустимо, що простих чисел — скінченна кількість. Тоді ми можемо перенумерувати всі прості числа - P1, P2, P3, ..., PN. Розглянемо число M = P1*P2*P3*...*PN + 1. Очевидно, число М не може ділитись націло на жодне з простих чисел P1, ..., PN (оскільки число (M - 1) ділиться націло на кожне з них). Отже, або число М є простим, або воно ділиться на якесь інше просте число, яке не увійшло до нашого списку. У будь-якому випадку, ми знайшли просте число, яке не входить до нашого списку простих чисел P1, P2, P3, ..., PN, що протирічить нашому припущенню. Отже, існує нескінченно багато простих чисел.

Статті з математики пов'язані з числами

Число | Натуральні числа | Цілі числа | Раціональні числа | Constructible numbers | Алгебраїчні числа | Computable numbers | Дійсні числа | Комплексні числа | Split-complex numbers | Bicomplex numbers | Гіперкомплексні числа | Кватерніони | Октоніни | Седеніони | Superreal numbers | Hyperreal numbers | Surreal numbers | Nominal numbers | Ординальні числа | Кардинальні числа | p-adic numbers | Послідовності натуральних чисел | Математичні константи | Великі числа | Нескінченність

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu