ทฤษฎีจำนวน
จากวิกิพีเดีย สารานุกรมเสรี
โดยธรรมเนียมเดิมนั้น ทฤษฎีจำนวน (number theory) เป็นสาขาหนึ่งของคณิตศาสตร์บริสุทธิ์ ซึ่งศึกษาเกี่ยวกับคุณสมบัติของจำนวนเต็ม สาขานี้มีผลงานและปัญหาเปิดมากมายที่สามารถเข้าใจได้ง่าย แม้กระทั่งผู้ที่ไม่ใช่นักคณิตศาสตร์ แต่ในปัจจุบัน สาขานี้ยังได้สนใจกลุ่มของปัญหาที่กว้างขึ้น ซึ่งมักเป็นปัญหาที่ต่อยอดมาจากการศึกษาจำนวนเต็ม นักคณิตศาสตร์ที่ศึกษาสาขานี้เรียกว่า นักทฤษฎีจำนวน
คำว่า "เลขคณิต" (arithmetic) มักถูกใช้เพื่ออ้างถึงทฤษฎีจำนวน นี่เป็นการเรียกในอดีต ซึ่งในปัจจุบันไม่ได้รับความนิยมเช่นเคย ทฤษฎีจำนวนเคยถูกเรียกว่า เลขคณิตชั้นสูง ซึ่งเลิกใช้ไปแล้ว อย่างไรก็ตามคำว่า "เลขคณิต" ยังปรากฏในสาขาทางคณิตศาสตร์อยู่ (เช่น ฟังก์ชันเลขคณิต เลขคณิตของเส้นโค้งวงรี หรือ ทฤษฎีบทมูลฐานของเลขคณิต) ไม่ควรจะสับสนระหว่างคำว่า เลขคณิต นี้ กับเลขคณิตมูลฐาน (elementary arithmetic) หรือสาขาของตรรกศาสตร์ที่ศึกษาเลขคณิตเปียโนในรูปของระบบรูปนัย
สารบัญ |
[แก้] สาขา
[แก้] ทฤษฎีจำนวนพื้นฐาน
เป็นสาขาหนึ่งของทฤษฎีจำนวนที่ศึกษาจำนวนโดยไม่ได้ใช้ความรู้ชั้นสูงจากสาขาอื่นเลย ปัญหาที่สาขานี้สนใจส่วนใหญ่แล้วจะเกี่ยวกับสมบัติที่น่าสนใจต่างๆของจำนวน เช่น การหารลงตัว(divisibility) การแยกตัวประกอบเฉพาะ (prime factorization) และ จำนวนสมบูรณ์ (perfect number) เป็นต้น แม้ว่าสาขานี้จะใช้เพียงความรู้พื้นฐานของคณิตศาสตร์ในการทำวิจัย ผลงานในสาขานี้หลายอย่างมีประโยชน์อย่างมากในทางปฏิบัติเช่น ทฤษฎีบทเศษเหลือของจีน (Chinese Remainder Theorem) ทฤษฎีบทเล็กของแฟร์มาต์ (Fermat's little theorem) ทฤษฎีบทของออยเลอร์ (Euler's theorem) ถูกนำไปใช้ในงานวิจัยด้าน ทฤษฎีพื้นฐานของการเข้ารหัส
ปัญหาบางอย่างในสาขานี้ดูแล้วเหมือนกับว่าจะง่าย แต่แท้จริงแล้วต้องใช้ความเข้าใจอย่างมากในการแก้ปัญหา เช่น
- ข้อความคาดการณ์ของโกลด์บาช (Goldbach conjecture)
- ข้อความคาดการณ์ของคาตาลอง (Catalan's conjecture)
- ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด (Twin prime conjecture)
[แก้] ทฤษฎีจำนวนแบบวิเคราะห์
[แก้] ประวัติ
[แก้] คำคม
- คณิตศาสตร์เป็นราชินีของวิทยาศาสตร์ และทฤษฎีจำนวนก็เป็นราชินีของคณิตศาสตร์ — เกาส์
[แก้] อ้างอิง
ทฤษฎีจำนวน เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น |