CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
二足歩行ロボット - Wikipedia

二足歩行ロボット

出典: フリー百科事典『ウィキペディア(Wikipedia)』

二足歩行ロボット(にそくほこうロボット、Biped walking robot)とは、ロボットのうち、人間のように二本足でバランスをとりながら歩くものをいう。特に人間と同様の形状をしているロボットをヒューマノイドと呼ぶ。

目次

[編集] 概要

二足歩行ロボットBiped walking robotまたはBiped robot)とは、ロボットのうち、人間のように二本足でバランスをとりながら歩くものをいう。特に人間と同様の形状をしているロボットをヒューマノイドと呼ぶが、ヒューマノイド全てが二足歩行ロボットであるとは限らない。

足(脚)とは回転機構で繋がった2つ以上のリンクで構成されたシリアルリンク機構で、二足歩行ロボットは脚を二つ持つ。 歩行とは、トロット(常足、なみあし)歩様のことである。トロット歩様とは交互に軸足が切り替わり、常にどちらかの足が地面に付いている、跳躍期の無い歩き方のことを言う。

二足歩行ロボットの開発は日本が最も進んでいるとされている。1995年に発表されたホンダのP-2(後のASIMO)は世界中の人々に強い衝撃を与えた。

[編集] 二足歩行ロボット研究の目的

ロボットの中には産業用の組立てロボットのように移動手段を持たないものや、地上(車輪キャタピラ、蛇のような多関節構造、4脚、6脚)、水中(無人潜水艇)、空中(無人飛行機)、宇宙(無人探査機)などさまざまな移動手段を持つものがある。

二足歩行ロボットは階段などの段差などがあるような、主に人間の生活環境に近い場所(例えば、住宅内など)で自由に移動することを目的に開発されている。初期の二足歩行ロボットにおいては、人間の二足歩行というメカニズムを工学的な視点より研究・解明する目的で製作されたものもある。

[編集] 二足歩行ロボット研究と文化的背景

現状では二足歩行ロボットは、エンターテイメント用途以外では実用域に達していない。 二足歩行ロボット研究は、純粋に学術研究のため、あるいは個人・グループの趣味に拠る部分が多く、個人の嗜好が反映されやすい。したがって二足歩行ロボット研究に対する文化的な影響は否定できない。エンターテイメント用途ならなおさらである。

ロボットの語源はチェコの作家カレル・チャペックの『ロボット』という1921年に出版されたSF小説に出てきたロボットという名の人造人間である。この小説ではロボットは奴隷として描かれており、ある日人間に反抗し人間の殺戮を開始する、というストーリーである。原典での描写に従えば、ロボットとは人間に危害を加える人造人間の奴隷ということになる。ハリウッド映画に出てくるロボットの多くが、この原典でのイメージを引き継いでいるのは理解できるだろう。

日本におけるロボット研究においては、からくりとの文化的なつながりが複数の識者により指摘がされている。[[1]] [2]] また、『鉄腕アトム』や『ドラえもん』といった漫画・アニメ作品で描かれたような、人間と共に、また人間と同じように活動するロボットへのあこがれが、日本でヒューマノイドや二足歩行ロボットの研究が盛んである理由の一つとの指摘する人も多い。実際、そのような意見を述べるロボット研究者は少なくない。[[3]] [[4]]

小型(10~30cm程度)の二足歩行ロボットについては、特に日本において個人や小規模な団体での研究が盛んである。これはロボカップROBO-ONEといったロボット競技大会によるところが大きい。


[編集] 二足歩行ロボットの歴史

[編集] 倒立振子からパターン歩行

二足歩行ロボットが工学の研究対象となったのは1970年頃からである。当初は倒立振子(とうりつしんし、Inverted pendulum)の延長上の技術として考えられており、その方面からの研究アプローチが盛んに行われた。 倒立振子とはスライダ(直動機構)上に逆さに置いた振子の制御モデルのことである。振子が倒れないようにスライダを制御する。手のひらの上に棒を立てて遊んだ記憶は誰にでもあると思うが、要するにそれの制御モデルである。 これはPID制御で比較的簡単に倒れないように制御することができた。 2重倒立振子、3重倒立振子も成功例が報告された。 人間の足は4重倒立振子モデルとして考えることもできるので、倒立振子モデルを研究していけば、いずれ2足歩行の制御が可能になると考えられていたのである。

人間の足に見立てた4重倒立振子モデルを、歩行になるような拘束条件を与え運動方程式を解くと、各関節の制御量が得られる。この動作(歩行パターンという)を実際のロボットに入力して動かせば、理論的にはロボットは歩くはずである。当時の計算機の能力からリアルタイムで歩行パターンを生成することが出来なかったので、あらかじめ歩行パターンを計算しておいた。それゆえ、この歩行制御法はパターン歩行と呼ばれた。

しかし、結論から言えばこの方法は失敗に終わった。 簡単に言えば当時のモーターや構造材が貧弱で、実際に動かすと理論と現実の相違が激しかったのである。 ロボットの状態をリルタイムで検知し、ある拘束条件のもとにフィードバックする必要があった。

[編集] ZMP

1985年頃、工業技術院の梶田秀司がZMP(Zero Moment Point)と呼ばれる歩行規範のロボットへの応用方法を発表した。これは動力学的な重心位置が軸足の上になるように、ロボットの運動方程式の解を求める方法である。これにより2足歩行ロボットの歩行制御に一定の解決を得た。 現在、2足歩行ロボットではZMPによる歩行制御が主流となっている。

歩行制御理論の研究が進み、アクチュエータや構造材が進歩しても、歩行ロボットはなかなか実現しなかった。「数歩歩いた」と言う程度の報告はあるものの、人間のような歩行と言えるものは少なかった。 人間の歩行の研究や、ロボットの歩行実験が繰り返されていくうちに上半身の作用が極めて重要であることがわかってきたのである。

当時の歩行ロボットは人間の腰から下を模倣したものがほとんどで上半身は省略されていた。パターン歩行にしてもZMPにしても位置制御が基本となるので、足首にもアクチュエータが必要になる。そのため末端重量が大きくなり、各関節のアクチュエータは強力で大きなものにならざるを得ない。構造材も当然重くなる。腰から下だけのロボットが片足を持ち上げると、それだけでロボットの質量の半分以上が動くことになる。したがって歩行時の重心の位置変化が激しく、安定領域の狭い制御の難しい制御系になっていた。ブルブルと振動を起こして転倒するロボットが大半であった。

また、末端重量が大きいので、遊脚を振り上げたときの反動が無視できなかった。遊脚を持ち上げてから蹴り下げ始める時に、スキーで言う抜重のような状態になり、軸足の床面との摩擦が少なくなる。摩擦が少なくなると軸足が滑り易くなる。パターン歩行にしてもZMPにしても軸足が動くというのは想定外であるし、想定したとしても検出できるセンサーがない。軸足が少しでも滑るとあっという間に転倒してしまった。

重たい脚を動かすには、上半身の動作で常に動的バランスを補償する必要があったのである。

[編集] WABOT

早稲田大学理工学部の故加藤一郎の率いる研究グループは二足歩行ロボット研究の草分け的存在であった。1960年代からロボットの研究を始め、製作したロボットにWABOTとという愛称を付けている。 1985年に、WABOTの11号機である、WL-11でヒト型二足ロボットでパターン歩行で動歩行を実現した。1.5秒/ステップのゆっくりとした歩行である。歩行を始めるとき、制御装置を積んだ大きな太鼓腹が音を立てて傾くのが印象的であった。はじめから意図したのか不明だが、上体の動作で遊脚の反動を打ち消していたのだろう。

1986年、この研究グループが、より積極的に上半身の作用を利用するために、上半身に見立てた大きな重りを二足歩行ロボットの腰部の上に取り付けた上体補償型二足歩行ロボットWL-12を製作した。重りはダンベルの様なもので、前後左右に振ることが出来た。見た目はともかく、そのロボットは非常に滑らかな歩行を実現した。階段も昇り降りすることが出来た。この研究成果により、二足歩行ロボットの歩行には上半身の働きが極めて重要であることが証明され、それ以降開発される二足歩行ロボットには上半身が付くことが主流になっていく。

[編集] ASIMO

1996年、自動車メーカーのホンダがヒト型ロボットP-2を発表した。歩行制御の点からは飛躍的な成果であるとは必ずしも言えなかったが、何よりもそのシステムとしての完成度の高さに当時の研究者は脅かされた。まず、外部につながるケーブルが無く、自律制御が可能だった。視覚センサを持ちマークで示した経路を自分で判断して歩くことが出来た。しかも、腕に見立てたマニピュレータを持ち人間の姿に似ていた、などの点が斬新であった。 ホンダが二足歩行ロボットの研究を行っていたことは特許公報などで断片的に知られていたが、これほど本格的に行っていることは知られていなかった。そのためP-2の発表は研究者たちにも一般社会にも非常に大きなインパクトを与えた。 これ以降歩行ロボットの研究が一気に一般化し、さまざまな企業が二足歩行ロボットの研究に乗り出す。 その後、ホンダのロボットはASIMOと名付けられ、商品化された。 2005年12月、ASIMOの新型において時速6km、跳躍時間 0.08秒の走行を実現させた。歩行から走行を同じロボットで実現した点で世界初である。(走行だけを行うロボットなら1980年代から存在する。)

[編集] 現在

ASIMO以外でも二足歩行ロボットによる走行が研究されてきている。走行の場合、着地の際の衝撃が歩行と比べて大きいため、衝撃緩和技術が重要になる。また、両足が地面から離れるため、その間の姿勢制御は無重量状態の姿勢制御と同様の技術が必要になる。

より進んだ活動を行うためには、周辺の状況を適切に認識し、以後の状況を予測し判断する能力も必要となる。段差や障害物を認識しそれを見越した行動を取ったり、人間や他のロボットの行動や指示などを認識しなればならない。カメラによる画像認識や音声認識などの技術も二足歩行ロボットにとって重要な技術となる。

現在では歩行制御の研究は一段落した感があり、二足歩行ロボットの研究の中心はヒューマノイドとしての統合システムの研究へ以降しつつある。

[編集] 二足歩行ロボットのしくみ

[編集] 歩行とは何か

歩行とは脚の運動による移動方法の一種である。 体重のかかるほうの脚を軸脚(ピボット、あるいはピボット脚とも言う)、振り上げている方の脚を遊脚と言う。二足歩行は2本の脚を交互に軸足にして重心を任意の方向に移動する移動方法である。

歩行の形態には静歩行動歩行がある。静歩行とは重心の路面への投影点が左右いずれかの足の裏に位置するような歩行法である。静歩行の静は、静的安定の静のことである。静的に安定なのでどこで停止しても転倒することが無いが、床面が常に平面であるとか環境に制約が多い。環境に合わせて機構を設計することになるが、複雑に変化するような場所には向かない。

二足歩行ロボットの研究対象になっているのは主に動歩行である。 動歩行は重心の路面への投影点が足の裏から外れる、通常人間が行うのに近い歩行法である。動歩行の動は動的安定の動で、動的には安定だが静的には不安定という意味である。従って運動量を打ち消してから歩行動作を停止しないと転倒してしまう。制御は難しいが、こぼこ道など条件の悪い環境にも対応できる。 人間と同じ複雑な環境でロボットが行動するには動歩行の実現が不可欠である。動歩行の実現のためには、加速度や床からの反力などといった状況を的確に収集・判断し、これに対応し制御するための技術開発が必要になる。

二足歩行には幾つか種類があり、その違いを歩様(歩容と書く場合もある)。 二足歩行の歩様にはウォーク(常足、なみあし)、トロット(速歩、はやあし)、ギャロップなどがある。単に歩行と言った場合はトロットのことと考えて差し支えない。

トロットとは交互に軸足が切り替わり、常にどちらかの足が地面に付いている、跳躍期の無い歩き方のことを言う。軸足は瞬間的に入れ替わり、両方に体重がかかっている期間は無いか無視できるほど短いものとされる。トロット歩行の場合、歩行という一見複雑な運動を、軸足の接地点を回転中心とした回転運動として捉えることができ、運動方程式を比較的簡単に立てることができる。このため二足歩行ロボットではトロットを規範とする歩行制御が適用されるのが普通である。

歩行が回転運動だとすると遠心力が発生するはずである。このときの遠心力Fは下の式で表される。vは重心の移動速度(=歩行速度)、rは重心位置の高さ、mは質量である。

F = \frac{m v^2}{r}

Fをmgと置き換えると、次の式が導かれる。gは重力定数である。

v = \sqrt{g r}

これは歩行の限界速度を表す式で、これより速い速度で歩行すると遠心力により自然に脚が床面から離れ、走行に移行することを意味している。人間の重心位置の高さを1mとすると歩行の限界速度は11.2km/hとなる。(ちなみに競歩の世界記録は13.6km/h (50Km)。腰の捻りや足裏のストロークなどが加わるため理論上の数値よりは大きくなる。) 走行に至らないまでも、歩行速度が増すと遠心力により軸足が滑りやすくなり、歩行ロボットは転倒しやすくなる。

トロット歩行の場合、水平方向の運動量は理論的には次のステップへ100%伝達される。上下方向の運動量は床面との衝突により失われてしまうが、人間の場合、重心の位置エネルギーをアキレス腱が保存し、軸足交換時に体を蹴り上げて次のステップに伝えていると考えられている。

両方に体重のかかる期間のある歩様をウォークと言うが、両足が地面についていると重心の速度ベクトルの向きが一方向に拘束されてしまう。そのため、ステップごとに上下方向の運動量に加えて左右方向の運動量も失われる(重心の軌跡がジグザグになる)ので、エネルギーコストが著しく悪化する。それゆえ、人間や鳥ではあまり行われていない歩行と考えられている。 また、2本脚のときと1本脚のときで運動モードが異なり制御が複雑になるので二足歩行ロボットでもあまり行われない。 跳躍期のある歩様はギャロップと言い、走行のことである。

なお、ここでの歩行の定義は工学における定義の一例である。また、歩様の分類や名前の付け方には研究者により差がある。


[編集] 二足歩行ロボットとは

二足歩行ロボットとは脚を二つ持ち、歩行を行うロボットのことである。 ロボットは節(リンク)関節(ジョイント)で構成されるリンク機構で、関節はモーターなどのアクチュエータで駆動される。 リンクとは剛体の構造物のことで、ジョイントは回転機構または直動機構のことである。 足(脚)とは回転機構で繋がった2つ以上のリンクで構成されたシリアルリンク機構である。 直動機構(スライダ)で脚を構成するロボットもあるが、これを二足歩行ロボットに含めるかは研究者により定義が分かれる。

研究者によって違うが、ロボットの構造は概して次のように定義されている。まず足首に相当する関節を第1関節、膝に相当する第2関節という。股関節は第3関節ということになるが胴体に接続する関節は慣例的にロボットでも股関節という。また、足裏を含む部分を第1節、脛に相当する部分を第2節、大腿に相当する部分を第3節という。腰や胴に相当する部分は慣例的にロボットでも胴体と言うことが多い。上半身の形態には様々なバリエーションがあり、腕のあるもの、頭の無いもの色々で、これといって代表的なものは無い。

[編集] 制御モデル

制御工学では制御対象について考察するときには、数式化しやすいように制御対象を抽象化するが、抽象化された制御対象を制御モデル、あるいは単にモデルと言う。 制御モデルが現物に近いほど精度の高い制御が可能になるのだが、制御モデルが複雑になると運動方程式が解けなくなるので、ふつうはなるべくシンプルなモデルが使われる。 二足歩行ロボットではヒトやトリを抽象化した制御モデルが使われる。

[編集] ヒト型モデル

文字通りヒトの形に似せた制御モデル。直立二足歩行の制御モデルである。日本の二足歩行ロボット研究では主流のモデルとなっている。研究初期では上半身を省略した下半身だけのモデルが使われることが多かったが、上半身の歩行への作用が発見されてからは全身モデルが使われるのが一般的になった。

多くの二足歩行ロボットがZMPによる重心の位置と速度の制御により歩行を行うが、この場合どうしても足首トルクが必要になる。足首のアクチュエータにより末端重量が増加すると、安定領域が狭くなるうえに、歩行時の重心変動が激しくなり、著しく制御が困難になる。ヒト型ロボットでは上半身の動作により、重心変動を打ち消す、あるいは緩和することが出来る。

胴体はヒトに似せて、垂直に立った形になる。そのため胴体の重心位置は股関節よりかなり上に位置することになり、偏心モーメントを持っている。そのためロボットが歩行を始めると、その反動が胴体にモーメント力として伝わることになる。このモーメント力を床面まで伝えて打ち消す必要があるので、脚の各関節にはかなり強力なアクチュエータと大きな足裏が必要になる。ヒト型モデルは動的バランスを取るために足首トルクが必要なのである。人間の脚も鳥などと比べると太く頑丈なのも同じ理由からである。

そのためヒト型モデルのロボットは頑丈なものになる傾向がある。大型のロボットでは高価なサーボモーターやハーモニックドライブなどが必要になり、製造コストが高い。

生物における直立二足歩行も胴体の重心位置が股関節の位置と一致せず、胴体から巨大なモーメント(回転力)が発生する。これを筋肉で抑えないといけないため、太い脚とそれを動かすための余分なエネルギーが必要となる。自然界で直立二足歩行があまり見られないのはエネルギー効率が悪いためであると考えられている。

[編集] 無質量脚モデル

歩行ロボットを最も理想的な姿にしたのが無質量脚モデルで、理論上の制御モデルである。 脚の質量はゼロで完全剛体。質量は全て胴体にあると仮定する。胴体の重心位置と股関節の位置は完全に一致する。したがって全身の重心位置も股関節と一致する。

無質量脚モデルだと脚の動作で重心が変動しない。さらに股関節と胴体の重心位置が一致しているのでモーメント力が発生せず、それを打ち消すためのトルクが必要ない。従って足首トルクも必要ない。床面への力と反動、重心位置だけを考えればいいので運動方程式が簡単で、アクチュエータの数も最小限なので制御も簡単である。 1980年頃、歩行現象の理論化のために無質量脚モデルが盛んに研究された。

無質量脚モデルは最も歩行を実現しやすいモデルだが、現実に製作することはもちろん不可能である。しかしそれに近いロボットに関する研究例は多い。日本では竹馬型ロボットと呼ばれる二足歩行ロボットが1980年頃から研究されている。竹馬型ロボットは腰の部分に脚を動作させるアクチュエータを持つ。脚は軽くするために伸縮するタイプが多い。原理的に人間の足(足首から下)に相当する部分は必要無いのだが、傾きを検出するためにポテンショナのみを装備した足首を持つ。 機構が単純で製作しやすく制御も容易なので、ロボットにおける動歩行の実現はこのタイプが最も早かった。1982年に東大の下山勲らが竹馬型ロボットによる動歩行について論文を発表している。

欧米ではホッピングロボットあるいはホッピングマシンと言われ、日本より研究が進んでいる。ホッピングマシンで無質量脚モデルと言えるのは1本足や2本足のもので、1980年代から走行を実現している。ただしホッピングロボットは飛び跳ねていないと倒れてしまうので歩行は出来ない。

[編集] トリ型モデル

鳥のような形をした二足歩行モデルである。胴体が前後に長く、前に曲がる第2間接を持つ脚を持つ。胴体と第2節の間に第3節を設定する場合もある。生物の鳥類には第3節がある。

胴体の両側に股関節があり、重心位置が股関節の位置とサジタル平面上で一致する。 胴体の重心位置が股関節と一致するので、胴体に偏心モーメントが無い。 したがってモーメント力を床面まで伝える必要が無いので、足首トルクを必要としない。 つまり、トリ型モデルはバランスを取るための足首トルクを必要としない。

そのためトリ型二足歩行ロボットでは足首のアクチュエータは省略されるか、小さいものでよい。 末端重量を小さくできるので、第2間接、股関節のアクチュエータも小型化できる。 そのため、脚部を非常に軽く作ることが可能である。 また脚が軽いので全身の重心位置も股関節にほぼ一致することになる。 重心位置が股関節に一致するので、地面を蹴る力がダイレクトに重心に伝わる。 したがってヒト型モデルと違い、余計なモーメント力が発生せず、大きな力で地面を蹴ることができる。このためトリ型モデルは運動性能が良く、極めて高速に走行することができるとされる。しかもエネルギーコストが良い。

トリ型二足歩行ロボットは1990年頃に産業技術総合研究所、および信州大学で製作されている。産業技術研究所のロボットはZMPによる歩行理論の実証を目指して、理論的に最も合理的なトリ型が採用された。信州大学のロボットは歩行ロボットとしては初めてサスペンションを装備した。足首と股関節にバネとダンパーを装着し、歩行から走行までモードレスに扱うことのできる独自の歩行理論の実証を目指した。

生物界ではトリ型歩行のほうが、直立二足歩行よりはるかに多く見られる。これは運動性がよく、エネルギー効率が高いためであると考えられている。 実際ダチョウなど走鳥類は時速80Km以上で長時間走ることができるとされている。これはチーターよりは遅いが、チーターの最高速は数秒間しか出ない。長距離ではダチョウのほうが優れていると言われている。

[編集] 恐竜型モデル

トリ型モデルの派生型として恐竜型モデルがある。 恐竜型モデルはトリ型モデルの胴体をさらに前後に長くしたものである。尾に相当する部分で積極的に偏心モーメントを打ち消す。トリ型モデルよりさらに高速走行に向くと考えられているが、旋回するときに尾や首が邪魔になるので、屋内での応用範囲は狭いと見られている。主にアメリカで研究されている。近年の恐竜の運動の研究には目覚しいものがあるが、歩行ロボットの研究成果も少なからず貢献している。

[編集] 歩行パターンの生成

ロボットが歩く時の関節角の制御量を歩行パターンと言う。歩行パターンと言うと、古臭いパターン歩行を連想させるので、歩行軌道や歩行制御量と言い換える場合もある。かつては計算機の能力が足りなかったため、あらかじめ歩行パターンを生成しておき、ロボットでそれを再生することで歩行を実現しようとしていた。現代ではリアルタイムで歩行パターンを生成することが出来る。歩行パターンは制御モデルの運動方程式を立て、歩行の仕方となる拘束条件を入れ、運動方程式を解いて制御量を求める。

運動方程式とは、ある関節にどれだけ力を加えると、体の姿勢がどう変化し、重心位置とモーメント力がどうなる、という関係を表した数式である。 運動方程式はリンクごとに相互作用を一つ一つ考慮して立てることも出来るか、歩行ロボットのようにいくつもリンク機構があると運動方程式をたてることは容易ではない。 ふつうはオイラー・ラグランジュの運動方程式を使い、運動方程式を作る。

オイラー・ラグランジュの運動方程式

\frac{d}{dt}\frac{\partial{}L}{\partial{}\dot{q}_i}-\frac{\partial{}L}{\partial{}q_i}=0

ラグランジアンL\は以下の式で表される。

L(\boldsymbol{q}(t),\dot\boldsymbol{q}(t),t)\equiv T - V

T\運動エネルギー \qquad Vポテンシャルエネルギー \qquad q_i一般化座標 \qquad \dot{q_i}一般化座標の時間微分

この方程式は、外力が加わらない限り、ポテンシャルエネルギーの変化量と運動エネルギーの変化量は等しいという、物理学の基本法則から導かれている。ロボットの運動3次元なので、式は行列とベクトルを使ったもので構成される。これ以上は専門書を参考にされたい。

ZMPを使う場合は、動力学的な重心位置が足裏の上にくるような関係式を立てて、上の運動方程式と組合わせて連立方程式にして解く。方程式を解くと、どの関節を動かすとZMPがどこになるのか、あるいは、ZMPをある位置に持って行きたいときは、どの関節をどれだけ動かせばいいのかが、行列式によって表される。

歩行パターンは遊脚が床面から離れてから、再び床面に着くまでを一つのパターンとなる。この1パターン分の各アクチュエータの制御量を生成し、ロボットにステップ毎に入力すると理論的にはロボットは歩行することになる。

式をラグランジュ力学から引用。著者user:218.221.86.211、user:るがこむuser:W.stuartほか

[編集] 二足歩行ロボットのハードウエア

二足歩行ロボットのハードウエアはフレームとアクチュエータ、制御系、電源で構成される。 以前は制御系と電源は外部に置くことが多かったが、バッテリーと制御機器の小型化によりロボット本体に搭載することが可能になった。

[編集] 主な二足歩行ロボット

[編集]  外部リンク

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com