Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Supercomputer - Wikipedia

Supercomputer

Da Wikipedia, l'enciclopedia libera.

Il Cray-2 il più potente supercomputer tra il 1985 e il 1989
Ingrandisci
Il Cray-2 il più potente supercomputer tra il 1985 e il 1989

I supercomputer sono dei sistemi di elaborazione progettati per ottenere potenze di calcolo estremamente elevate, dedicati ad eseguire calcoli particolarmente onerosi. Ovviamente sono strumenti costosi, e normalmente sono di proprietà di società o enti di ricerca che condividono il loro utilizzo tra molti dipendenti/ricercatori: e vista la velocità attuale dello sviluppo tecnologico nel campo dell'informatica e dei microprocessori, di solito perdono l'aggettivo "super" dopo pochi anni dalla loro nascita, superati da macchine ancora più potenti.

In passato, i supercomputer erano dotati di architetture più sofisticate e componentistica migliore degli usuali computer al fine di poter svolgere con maggior efficienza le elaborazioni assegnate. Tuttavia in tempi recenti (a partire dagli anni '90) il divario fra la potenza delle CPU per supercomputer e i normali microprocessori commerciali è andato assottigliandosi progressivamente, e l'architettura dei supercomputer ha visto crescere progressivamente il numero di CPU impiegate. Attualmente (2006) la maggior parte dei nuovi supercomputer in progetto e di quelli in funzione sono basati su cluster di migliaia o addirittura centinaia di migliaia di unità di calcolo non molto più potenti di un buon personal computer, connesse da reti locali ad alta velocità e coordinate da estensioni apposite del sistema operativo adottato, generalmente una versione di Unix: una di queste estensioni, openmosix, è anche open source.

Il parallelismo sempre più massiccio dei supercomputer e in generale delle macchine nate per garantire elevate capacità di calcolo ha stimolato molte ricerche in campo software per esplicitare il parallelismo intrinseco nelle operazioni e nei programmi: queste ricerche hanno portato alla definizione di alcuni linguaggi di programmazione paralleli, come l'Occam, che è senz'altro il più diffuso del gruppo.

Indice

[modifica] Filosofia

Ciò che differenzia un supercomputer da classico computer non è solo la maggior potenza di calcolo ma anche le architetture utilizzate per sviluppare queste macchine. I classici computer sono progettati secondo l'architettura di Von Neumann dato che le operazioni che l'utente esegue usualmente con la macchina possono essere svolte in modo efficiente da questa architettura. I supercomputer invece spesso analizzano molti dati senza una vera interazione dell'utente dato che usualmente devono eseguire un numero ridotto di operazioni su un elevato numero di dati. Quindi i supercomputer utilizzano architetture alternative che sono in grado di assolvere questi compiti con maggiore efficienza rispetto all'architettura di Von Neumann. Negli ultimi anni questa distinzione comunque si è affievolita dato che il diffondersi dei giochi tridimensionali ha costretto i computer classici e le loro schede grafiche ad adottare soluzioni sviluppate per i supercomputer. Contestualmente l'aumento della potenza di calcolo dei microprocessori per computer e problemi di carattere tecnico legati alla difficoltà di elevare le frequenze di funzionamento delle CPU hanno spinto il settore del supercalcolo verso l'utilizzo di soluzioni classiche in modo da abbattere i costi senza penalizzare le prestazioni. Infatti l'attuale supercomputer più potente del pianeta il Blue Gene/L utilizza moltissimi componenti standard e le sue CPU sono dei derivati delle CPU IBM PowerPC 440 con l'aggiunta di un'unità in virgola mobile addizionale per aumentarne le prestazioni.

[modifica] Storia

Usualmente si ritiene che i supercomputer siano i più potenti computer del pianeta, questa classificazione comprende tutti i primi computer a partire dalla macchina analitica di Babbage passando per i vari modelli di Zuse (i primi computer funzionanti) fino ad arrivare ai supercomputer dei giorni nostri.

Molti esperti dell'informatica invece fanno risalire i supercomputer agli anni cinquanta e in particolare al NORC prodotto da IBM per via delle soluzioni particolari adottate per ottenere una macchina con le migliori prestazioni e quindi con soluzioni tecniche diverse da quelle utilizzate per i modelli precedenti.

Il termine super computing venne utilizzato per la prima volta dal quotidiano New York World nel 1920 in un articolo che descriveva una macchina elettromeccanica costruita dall'IBM per la Columbia University

Tra gli anni 60 e la metà degli anni 70 la società CDC con i suoi supercomputer fu l'azienda leader del settore. I tecnici della CDC per ottenere elevate prestazioni di calcolo svilupparono diverse soluzioni tecnologiche come l'utilizzo di processori specializzati per i diversi compiti (CDC 6600) l'utilizzo di pipeline (CDC 7600) e l'utilizzo di processori vettoriali (CDC STAR-100). Scelte strategiche della CDC rischiarono di far fallire la società e alcuni tecnici insoddisfatti dei dirigenti della società abbandonarono la CDC per tentare nuove strade. Tra questi il più famoso fu Seymour Cray che con il Cray-1 segnò una nuova strada per le soluzioni tecnologiche utilizzate e per l'elevata potenza di calcolo sviluppata.

Dalla meta degli anni 70 fino alla fine degli anni 80 la Cray Research rappresento il leader nel settore del supercalcolo. Cray estese le innovazioni utilizzate nelle macchine della CDC portandole al loro estremo ed utilizzando soluzioni innovative come il raffreddamento a liquido o delle strutture a torre ove alloggiare le schede con le unità di calcolo in modo da ridurre la lunghezza media delle connessioni.

Durante gli anni 80 si assistette alla nascita di molte società che svilupparono sistemi di calcolo ad alte prestazioni. Queste piccole società entrarono in concorrenza con realtà affermate come IBM o Cray e le costrinsero a effettuare radicali riduzioni di prezzo dei sistemi per rimanere competitive. Alla fine degli anni 80 e anni 90 i supercomputer divennero macchine a parallelismo massivo basate su centinaia se non migliaia di processori elementari. Inizialmente questi processori erano ancora dei processori sviluppati esplicitamente per il supercalcolo come quelli utilizzati dal CM-5/1024 ma verso la fine degli anni novanta oramai si era passati definitivamente a processori generici che fornivano elevate prestazioni e costi ridotti per via della produzione in serie attuata da ditte come Intel o AMD. Le piccole ditte nate durante gli anni 80 erano fallite o erano state assorbite dalle grosse società la stessa Cray fallì e fu acquisita dalla Silicon Graphics.

Negli ultimi anni i supercomputer sono macchine sempre più parallele e dotate di un numero sempre maggiore di processori elementari. Esempio eclatante è il Blue Gene/L che con i suoi 131.072 processori è la più potente macchina del pianeta. Lo sviluppo di questi sistemi oramai è svolto da grandi società di informatica come IBM o HP per via degli elevati costi di realizzazione dei sistemi di calcolo. I supercomputer oramai sono macchine costruite su ordinazione, sono pezzi unici progettati per le specifiche necessità dell'acquirente e realizzati assemblando componenti standard in modo da contenere i costi di sviluppo e produzione.

É da notare che l'Europa dopo un inizio promettente non ha mai trainato la ricerca dell'ambito dei supercomputer e in generale dei computer. Dalla seconda guerra mondiale fino agli anni 90 gli Stati Uniti d'America hanno praticamente posseduto sempre i più potenti computer del pianeta. Ma dagli anni 90 in poi il Giappone ha iniziato ad imporsi come competitore credibile all'egemonia Statunitense grazie a cospicui finanziamenti pubblici a progetti di supercalcolo svolti da società nipponiche in cooperazioni con le locali università, particolarmente significativo è stato lo sforzo di NEC nel settore. Negli ultimi anni il progetto Blue Gene (finanziato dal Dipartimento della Difesa Statunitense) ha rinsaldato la posizione Statunitense ed al momento non sono noti progetti in grado di intaccare la posizione Statunitense nel settore del supercalcolo.

[modifica] Utilizzi

I supercomputer vengono utilizzati per realizzare processi di calcolo intensivi come le analisi metereologiche (incluse le analisi sull'incidenza dell'inquinamento sull'ambiente), le analisi molecolari (calcolo della struttura tridimensionale e del loro ripiegamento, delle proprietà chimiche, ecc) simulazioni fisiche (simulazioni di fluidodinamica, simulazioni di detonazioni nucleari, di astrofisica, di fisica nucleare ecc), criptoanalisi e altro. I militari e le agenzie governative di tutte le nazioni ne fanno un uso molto intenso. Anche le aziende industriali ne stanno sperimentando l'utilità per i calcoli di previsione e di gestione di grandi volumi di dati che devono essere processati dall'APS (Advanced Planning System) del loro sistema gestionale (ERP).

[modifica] Software

Per utilizzare i supercomputer i programmi spesso vanno adattati per sfruttare al meglio le peculiarità delle macchine. I software per il calcolo distribuito utilizzano API come le MPI o PVM o soluzioni software open source come Beowulf o Openmosix per creare delle specie di supercomputer virtuali utilizzando computer ordinari collegati da reti locali ad alta velocità. Tecnologie come Zeroconf (Bonjour) consentono di realizzare supercomputer virtuali per compiti specifici. Per esempio il software Shake di Apple utilizza la tecnologia ZeroConf per individuare altri computer utilizzate lo stesso software nella rete locale e per suddividere i compiti di calcolo sui vari computer. Quasi tutti i programmi di grafica tridimensionale permettono funzionalità simili. Sebbene nessuna soluzione basata su computer ordinaria sia mai riuscita a diventare il più potente computer del pianeta questa distinzione si sta sempre più assottigliando e in un prossimo futuro potrebbe scomparire. Attualmente il maggior problema aperto nel settore dei supercomputer è la realizzazione di linguaggi di programmazione semplici in grado di fruttare il parallelismo delle macchine.

[modifica] Sistemi operativi

La maggior parte dei Supercomputer attualmente utilizza Linux o una variante di Unix, Linux è diventato molto popolare fin dal 2004
Ingrandisci
La maggior parte dei Supercomputer attualmente utilizza Linux o una variante di Unix, Linux è diventato molto popolare fin dal 2004

I moderni Supercomputer utilizzano come sistema operativo una delle varianti di Linux o Unix con delle estensioni particolare per gestire le architetture peculiari. Le interfacce grafiche sono molto più sviluppate che in passato ma comunque sono tendenzialmente meno sviluppate rispetto a quelle utilizzate dai personal computer dato che gli sviluppatori tendono a non dedicare troppo tempo alle estensioni non essenziali del sistema operativo (per non essenziali si intendono tutti i componenti che non contribuiscono direttamente all'elaborazione delle informazioni o alla ottimizzazione delle elaborazioni). Questo è logico considerando che gli utilizzatori finali saranno un numero limitato di utenti che dovrebbero avere una conoscenza discreta dell'informatica e che quindi non dovrebbero venir impressionati da un'interfaccia grafica spartana. Comunque la diffusione di Linux ha consentito di riutilizzare molte interfacce grafiche sviluppate per i personal computer migliorando l'interfaccia grafica rispetto ai modelli prodotti negli anni precedenti.

Interessante è che negli ultimi anni i principali competitori nel settore del supercalcolo come Silicon Graphics perdono commesse a favore di società come NVIDIA che sviluppando prodotti per il mercato dei personal computer dispone di molti fondi da investire in ricerca e sviluppo. La continua ricerca di prestazioni superiori spinge queste società a presentare prodotti competitivi con quelli delle classiche società leader del supercalcolo ma a una frazione del loro costo per via dell'economia di scala che le società indirizzate al settore dei personal computer possono realizzare.

Storicamente i supercomputer preferivano sacrificare la compatibilità con il passato pur di ottenere prestazioni sempre più elevate. Quindi le nuove generazioni di sistemi non erano compatibili con il passato. Questo non era un vero problema dato che spesso gli utilizzatori si supercomputer sviluppavano internamente le applicazioni che utilizzavano e quindi adattare i programmi per le nuove macchine non era una procedura molto costosa. Questo spingeva le società produttrici ad avere diversi sistemi operativi per le loro macchine. Cray per esempio ha sviluppato sei versioni distinte del suo sistema operativo Unicos e prima di questo sistema operativo aveva sviluppato altri sistemi operativi ovviamente incompatibili tra di loro. Altri produttori seguirono strade simili e difatti sebbene quasi tutti i supercomputer utilizzano varianti Unix fin dagli anni 70 la maggior parte sono incompatibili tra di loro. negli ultimi anni con la diffusione di LInux si è avuto un processo di riduzione e consolidamento ma comunque i sistemi ad alte prestazioni e i sistemi sviluppati per ottenere elevata sicurezza tendono ad includere delle estensioni proprietarie che rendono i vari sistemi operativi di fatto incompatibili.

[modifica] Programmazione

Le architetture parallele dei supercomputer richiedono particolari tecniche di programmazione per poter sfruttare efficacemente la potenza di calcolo dei sistemi. Il Fortran rimane un linguaggio molto diffuso nella comunità scientifica per via della sua semplicità rispetto a linguaggio come il C o il C++ e per via del fatto che i compilatori ottimizzati per alcune applicazioni riescono a realizzare codice più efficiente di quello generato dai compilatori C. Per sfruttare il parallelismo delle macchine vengono mesi a disposizione strumenti di programmazione come le PVM e il MPI per cluster di computer collegati da reti non velocissime e OpenMP per gestire macchine con memorie condivise con elevate latenze.

[modifica] Hardware

[modifica] Architettura

Per approfondire, vedi la voce Tassonomia di Flynn.

I supercomputer per ottenere prestazioni sempre più elevate nel corso degli anni hanno esplorato molte strade e sviluppato architetture hardware diverse dalle solite architetture utilizzate nei computer. Queste architetture sono ottimizzate per eseguire alcune tipologie di operazioni mentre sono inefficienti per altre elaborazioni e quindi le architetture sono state sviluppate a seconda dello scopo alla quale era dedicata la macchina.

[modifica] Tecniche di elaborazione

Il calcolo vettoriale venne sviluppato nei supercomputer e viene attualmente utilizzato per migliorare le elaborazioni di alcune tipologie di programmi. Dalle tecnologie di elaborazione vettoriale sono derivati i DSP e le elaborazioni SIMD che attualmente sono presenti in praticamente tutti i processori moderni tramite set specializzati di istruzioni.

Le moderne console in particolare utilizzano l'elaborazione SIMD in modo molto esteso e in alcuni contesti queste macchine possono mostrare prestazioni paragonabili a sistemi molto più costosi. All'interno delle moderne schede grafiche inoltre si trovano processori specializzati in grado di generare potenze di calcolo dell'ordine dei teraflops grazie all'elaborazione SIMD. Le applicazioni delle schede grafiche sono stati storicamente legate all'elaborazione video per via dei limiti di programmazione dei processori grafici (GPU). Ma il costante incremento di potenza delle schede grafiche (spinto in maniera rilevante dal mercato dei videogiochi) e lo sviluppo di processori grafici evoluti che consentono una programmazione più aperta degli stessi ha spinto molti gruppi di ricerca a sviluppare progetti volti all'utilizzo della potenza di calcolo dei processori grafici per applicazioni generiche. Questi programmi ricadono sotto il nome di General-Purpose Computing on Graphics Processing Units (GPGPU.)

[modifica] Sviluppo

Lo sviluppo nel settore dei supercomputer si è concentrato su alcune aree specifiche come aumentare la velocità di accesso alla memoria, aumentare la velocità dei singoli componenti e incrementare il parallelismo della macchina suddividendo le operazioni su più unità funzionali in modo da incrementarne le prestazioni.

Bisogna tenere conto che tutti i supercomputer devono sottostare alla legge di Amdahl e quindi i progettisti cercano di rendere le macchine il più possibile parallele e a sfruttare l'hardware al massimo in modo da eliminare i colli di bottiglia del sistema.

[modifica] Sfide tecnologiche

Raffreddamento a liquidi di un supercomputer Cray X-MP
Ingrandisci
Raffreddamento a liquidi di un supercomputer Cray X-MP

Il settore del supercalcolo oltre a dover affrontare i classici problemi tecnologici dei computer deve affrontare dei problemi che nel settore dei computer personali non sono presenti o sono meno pressanti.

  • I supercomputer generano molto calore e quindi la dissipazione del calore è un problema primario nel settore del calcolo ad alte prestazioni. L'eccessiva potenza dissipata oltre a porre problemi di dissipazione rappresenta un elevato costo per gli enti che acquistano i supercomputer. Un supercomputer ad elevate prestazioni può dissipare più di un megawatt e bisogna tenere conto che le macchine spesso sono utilizzate 24 ore al giorno per 365 giorni all'anno.
  • Le informazioni non possono viaggiare più velocemente della velocità della luce e quindi i supercomputer cercano di mantenere i collegamenti il più corti possibili in modo da ridurre le latenze di collegamento. Per esempio i supercomputer Cray spesso hanno una forma cilindrica per permettere dei collegamenti brevi tra le varie unità funzionali.
  • I supercomputer utilizzano e generano elevatissime quantità di dati in lassi di tempo molto ridotti. Lo sviluppo di sistemi di I/O efficienti e molto veloci è uno dei problemi primari dei supercomputer. Questo coinvolge sia le unità di memorizzazione fisse che le memorie volatili come le RAM dei supercomputer. Le memorie RAM per esempio sono molto più lente delle CPU ed a ogni anno questo scarto prestazionale aumenta dato che le memorie aumentano la loro velocità del 10% mentre i processori aumentano la loro velocità del 60%.

Le tecnologie sviluppate per i supercomputer comprendono

[modifica] Tipologie di supercomputer

Il supercomputer Columbia della NASA nel NASA Advanced Supercomputing facility
Ingrandisci
Il supercomputer Columbia della NASA nel NASA Advanced Supercomputing facility

Ci sono tre grandi categorie di supercomputer per compiti generici:

  • Macchine vettoriali, queste macchine eseguono la stessa operazione (aritmetica o logica) su molti dati contemporaneamente. Attualmente i processori dotati di istruzioni in grado di comportarsi in questo modo vengono definiti processori con istruzioni SIMD e non vengono conteggiati come processori vettoriali nato che non è la loro principale modalità di funzionamento.
  • Computer paralleli, sono formati da un insieme di nodi di calcolo collegati da reti telematiche ad alta velocità. Normalmente utilizzano un'architettura della memoria di tipo NUMA. I processori, le memorie e la rete di comunicazione viene progettata fin dall'inizio per venir assemblata in un sistema formato da molti nodi.
  • Cluster, un elevato numero di personal computer collegati da reti telematiche veloci a bassa latenza.

Attualmente la legge di Moore e l'economia di scala domina il settore dei supercomputer e la loro progettazione. Un singolo computer moderno è più veloce di un supercomputer di quindici anni fa, inoltre le tecniche per ottenere elevate potenze di calcolo che una volta erano ad appannaggio dei supercomputer ora sono comuni tra i computer. Progettare dei circuiti integrati oramai richiede consistenti investimenti e se l'integrato viene prodotto in un numero limitato dii pezzi il costo di sviluppo incide in maniera eccessiva sul prodotto, quindi si tendono a prediligere componenti prodotti in serie in modo da spalmare il costo di sviluppo su milioni di esemplari.

Infine molti problemi analizzati dai supercomputer possono venir parallelizzati in modo efficace. Molti problemi sono parallelizzabili in modo da accedere raramente alla memoria principale concentrando la maggior parte degli accessi in una zona di memoria vicini al processore e quindi veloce. Questo permette di non sovraccaricare la rete in un sistema a cluster. Per questo motivo i supercomputer dotati di pochi processori molto veloci sono oramai limitati alle applicazioni che non sono parallelizzabili.

[modifica] Supercomputer esistenti

[modifica] Misura della velocità

La velocità dei supercomputer viene generalmente misurato in "FLOPS" (FLoating Point Operations Per Second) o in suoi multipli come il or TFLOPS (1012 FLOPS). Questa misura viene ottenuta eseguendo particolari benchmark che simulano classi di problemi reali per permettere un confronto obiettivo tra le varie macchine. Normalmente i benchmark effettuano una decomposione LU di un'ampia matrice, un problema simile ai problemi presento in campo scientifico ma sufficientemente semplice da essere eseguito in tempi ragionevoli.

[modifica] Il più potente supercomputer del pianeta

Immagine del Blue Gene/L
Ingrandisci
Immagine del Blue Gene/L

Il 25 marzo 2005 il prototipo IBM Blue Gene/L è diventato il più potente computer del pianeta. Successivi ampliamenti del sistema lo hanno portato a generate 70,72 TFLOPS (1012 FLOPS) grazie a 32.768 processori installati. Il supercomputer utilizza dei processori PowerPC 440 modificati appositamente per questa architettura. Successivi ampliamenti della macchina hanno portato il sistema ad avere 131.072 e a generare 280 TFLOPS. Successive espansioni della macchina dovrebbero portarla a generare 0,5 PFLOPS. A novembre 2006 il BlueGene/L è la più potente macchina del pianeta secondo il sito Top500 [1]. Nel giugno 2006 il sistema con 131.072 processori ottenne un nuovo record sviluppando 207.5 TFLOPS in un'applicazione reali.[2].

L'MDGRAPE-3 è un computer completato nel giugno 2006 in grado di sviluppare un PFLOPS di potenza, il sistema non entra nella classifica dato che è un computer specializzato per simulazione delle interazioni chimiche e quindi non è in grado di eseguite i benchmark utilizzati per confrontare i sistemi di calcolo. [3] [4] [5]

L'India sta sviluppando un supercomputer che dovrebbe arrivare alla potenza di un PFLOPS. Il progetto è diretto da Dr.Karmarkar l'inventore dell'algoritmo Karmarkar. La società Tata gestisce il progetto.[6]

[modifica] Precedenti supercomputer del pianeta

Il Cray 1 il più potente supercomputer tra il 1976 e il 1981
Ingrandisci
Il Cray 1 il più potente supercomputer tra il 1976 e il 1981

Prima dell'arrivo dei sistemi BlueGene/L il record di computer più veloce del pianeta era il NEC Earth Simulator del Yokohama Institute for Earth Sciences in Giappone. Il cluster era formato da 640 schede fornite di processori vettoriali a 8 vie basati sull'architettura NEC SX-6 per un totale di 5.120 processori. Il sistema utilizza una versione appositamente sviluppata del sistema operativo UNIX.

Al momento dell'introduzione dell'Earth Simulator il computer era cinque volte più veloce del precedente computer l'ASCI White al Lawrence Livermore National Laboratory. L'Earth Simulator è rimasto il più potente computer del pianeta per due anni e mezzo.

I supercomputer odierni sono prodotti da una ristretta cerchia di aziende, tra cui IBM, SGI, Sun Microsystems, HP, NEC, Fujitsu e Cray. Si vanno diffondendo i sistemi prodotti in modo "amatoriale", ossia mettendo insieme un grande numero di normali PC attraverso una rete veloce di comunicazione. Per esempio, il cluster System X della Virginia Tech University ha raggiunto la posizione numero tre nel novembre 2003.

I grafici costruiti dal sito (come questi) mostrano un aumento della potenza di calcolo negli anni sorprendentemente regolare.

L'elenco dei 500 computer più potenti del pianeta la TOP500 è gestita e mantenuta dal sito http://www.top500.org/

[modifica] Quasi supercomputer

Molti progetti di calcolo distribuito sviluppano una potenza di calcolo comparabile con quella sviluppata dai più potenti supercomputer del pianeta. Un esempio è il progetto SETI@home che è in grado di sviluppare fino a 72,53 TFLOPS [7].

Il 16 maggio 2005 il progetto distribuito Folding@home riuscì a sviluppare 195 TFLOPS secondo la pagina delle statistiche [8]. In alcune occasionali il progetto è riuscito a sviluppare fino a 207 TFLOPS.

Il progetto GIMPS per la ricerca dei numeri di Merselle sviluppa circa 18 TFLOPS.

Il motore di ricerca Google si stima che sviluppi tra i 126 e i 316 TFLOPS. Si stima che il sistema sia composto da un numero compreso tra 32.000 e 79.000 dual Xeon a 2 GHz. [9] Si sa che i server sono distribuiti sul pianeta anche perché un tale numero di computer occuperebbero un edificio enorme e sarebbero logisticamente difficili da raffreddare se posizionati tutti nello stesso ambiente, quindi si presume che i computer lavorino in modalità Grid.

[modifica] Supercomputer specializzati

FPGA contenente 20.000 porte logiche
Ingrandisci
FPGA contenente 20.000 porte logiche

I supercomputer specializzati sono dispositivi ad alte prestazioni sviluppati per eseguire compiti specifici. Usualmente sono sviluppati implementando in hardware su chip FPGA o su chip custom VLSI le funzioni da svolgere per risolvere il problema. Questa soluzione offre un rapporto prezzo prestazioni ottimale ma ovviamente sacrifica la generalità dato che una volta risolto il problema la macchina non può essere indirizzata a svolgere altri compiti.

Questi sistemi vengono utilizzati per la crittanalisi e per le analisi astrofisiche.

Esempi di supercomputer specializzati sono:

  • Deep Blue, sviluppato per giocare a scacchi.
  • GRAPE per l'astrofisica
  • Deep Crack per forzare il DES

[modifica] Linea del tempo dei supercomputer

Periodo Supercomputer Velocità di picco Posizione
1836 Macchina analitica Babbage 0,3 OPS RW Munro, Woodford Green, Essex, Regno Unito
1938 Zuse Z1 0,9 FLOPS Konrad Zuse appartamento dei genitori, Methfeßelstraße, Berlino, Germania
1939 Zuse Z2 0,9 OPS Konrad Zuse appartamento dei genitori, Methfeßelstraße, Berlino, Germania
1941 Zuse Z3 1,4 FLOPS German Aerodynamics Research Institute (Deutsche Versuchsanstalt
für Luftfahrt
) (DVL), Berlino, Germania
1942 Atanasoff Berry Computer (ABC) 30 OPS Iowa State University, Ames, Iowa, USA
1942 TRE Heath Robinson 200 OPS Bletchley Park, Regno Unito
1943 Tommy Flowers Colossus 5 kOPS Bletchley Park, Regno Unito
1946
1948
U. of Pennsylvania ENIAC 50 kOPS Aberdeen Proving Ground, Maryland, USA
1954 IBM NORC 67 kOPS U.S. Naval Proving Ground, Dahlgren, Virginia, USA
1956 MIT TX-0 83 kOPS Massachusetts Inst. of Technology, Lexington, Massachusetts, USA
1958 IBM SAGE 400 kOPS 23 basi U.S. Air Force nel Nord America
1960 UNIVAC LARC 500 kFLOPS Lawrence Livermore National Laboratory, California, USA
1961 IBM 7030 "Stretch" 1,2 MFLOPS Los Alamos National Laboratory, New Mexico, USA
1964 CDC 6600 3 MFLOPS Lawrence Livermore National Laboratory, California, USA
1969 CDC 7600 36 MFLOPS Lawrence Livermore National Laboratory, California, USA
1974 CDC STAR-100 100 MFLOPS Lawrence Livermore National Laboratory, California, USA
1975 Burroughs ILLIAC IV 150 MFLOPS NASA Ames Research Center, California, USA
1976 Cray-1 250 MFLOPS Los Alamos National Laboratory, New Mexico, USA (più di 80 nel pianeta)
1981 CDC Cyber 205 400 MFLOPS (molti siti nel pianeta)
1983 Cray X-MP/4 941 MFLOPS Los Alamos Nat. Lab.; Lawrence Livermore Nat. Lab.; Battelle; Boeing
1984 M-13 2,4 GFLOPS Scientific Research Institute of Computer Complexes, Mosca, USSR
1985 Cray-2/8 3,9 GFLOPS Lawrence Livermore National Laboratory, California, USA
1989 ETA10-G/8 10,3 GFLOPS Florida State University, Florida, USA
1990 NEC SX-3/44R 23,2 GFLOPS NEC Fuchu Plant, Fuchu, Giappone
1993 Thinking Machines CM-5/1024 65.5 GFLOPS Los Alamos National Laboratory; National Security Agency
Fujitsu Numerical Wind Tunnel 124.50 GFLOPS National Aerospace Laboratory, Tokyo, Japan
Intel Paragon XP/S 140 143.40 GFLOPS Sandia National Laboratories, New Mexico, USA
1994 Fujitsu Numerical Wind Tunnel 170,40 GFLOPS National Aerospace Lab, Giappone
1996 Hitachi SR2201/1024 220,4 GFLOPS University of Tokyo, Giappone
1996 Hitachi/Tsukuba CP-PACS/2048 368,2 GFLOPS Center for Computational Physics, University of Tsukuba, Tsukuba, Giappone
1997 Intel ASCI Red/9152 1,338 TFLOPS Sandia National Laboratories, Albuquerque, USA
1999 Intel ASCI Red/9632 2,3796 TFLOPS Sandia National Laboratories, Albuquerque, USA
2000 IBM ASCI White 7,226 TFLOPS Lawrence Livermore National Laboratory, California, USA
2002 NEC Earth Simulator 35,86 TFLOPS Earth Simulator Center, Giappone
2004 SGI Project Columbia 42,7 TFLOPS Project Columbia, NASA Advanced Supercomputing facility, USA
2004 IBM Blue Gene/L (32,768) 70,72 TFLOPS DOE/IBM, USA
2005 IBM Blue Gene/L (65,536) 136,8 TFLOPS DOE/NNSA/LLNL, USA
2005 IBM Blue Gene/L (131,072) 280,6 TFLOPS DOE/NNSA/LLNL, USA

[modifica] Voci correlate

[modifica] Altri progetti

[modifica] Collegamenti esterni

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com