Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Nucleo atomico - Wikipedia

Nucleo atomico

Da Wikipedia, l'enciclopedia libera.

Nota disambigua - Se stai cercando altri significati della parola nucleo, vedi Nucleo.

In fisica col termine nucleo generalmente si intende la parte centrale, densa, di un atomo, costituita da protoni che possiedono carica positiva e neutroni di carica nulla, detti collettivamente nucleoni.

Il nucleo è caratterizzato da diversi parametri di cui i più importanti sono il numero di massa A, che rappresenta il numero totale di nucleoni presenti, il numero atomico Z che è il numero di protoni ed il numero neutronico N che rappresenta il numero di neutroni. Vale la relazione: A = Z + N. Altri parametri importanti sono lo spin totale, la parità, lo spin isotopico e, nel caso di nuclei radioattivi, l'emivita.

Malgrado la presenza di protoni a carica positiva che quindi tra loro si respingono, il nucleo è mantenuto insieme dalla forza forte che attrae tutte le particelle composte da quark, come appunto i nucleoni. Tale forza agisce tra i nucleoni in un modo relativamente simile alla forza di Van der Waals tra le molecole: essa appare come il residuo esterno della forza che attrae i quark all'interno di un nucleone. Tale forza tuttavia non sempre riesce a mantenere stabile il nucleo dando origine a fenomeni quali il decadimento alfa, beta, gamma, ed in alcuni casi, alla fissione nucleare o altri più esotiche forme di decadimento radioattivo.

Storicamente la prima evidenza sperimentale dell'esistenza del nucleo contenente tutta la carica positiva degli atomi è stata osservata in seguito ad un esperimento compiuto a Manchester dal fisico neozelandese Ernest Rutherford. Egli commentando la sua formidabile scoperta scrisse:

È come se una palla di cannone sparata contro un foglio di carta velina tornasse indietro

Le proprietà dei nuclei vengono studiate dalla fisica nucleare, la quale nel corso del ventesimo secolo ha trovato decine di applicazioni nei più disparati campi scientifici: tecniche come la risonanza magnetica nucleare sfruttano lo spin totale dei nuclei per ottenere delle immagini estremamente dettagliate dei tessuti umani, la datazione al carbonio 14 o potassio permette di datare con grandissima precisione reperti storici attraverso l'emivita dei nuclei radioattivi contenuti nel campione da datare, la fissione nucleare ha permesso la costruzione delle centrali elettriche termonucleari e alcuni ottimisti prevedono che la sua sorella, la fusione nucleare, diverrà la primaria fonte energetica dell'umanità nel prossimo futuro. Altre applicazioni sono state trovate anche in altri campi come l'agricoltura e nella sterilizzazione/conservazione degli alimenti.

[modifica] Il raggio del nucleo

Un metodo classico per calcolare il raggio R di un nucleo, fa uso dell'energia di Coulomb:

E_{Coulomb} \approx \frac {3}{5} \frac {(Ze)^2}{R}

che è pari all'energia di superficie:

E_{superficie} \approx 4 \pi R^2 \gamma

dove γ è la tensione superficiale.

Eguagliando le prime due equazioni, si ottiene per il raggio il valore di:

R \approx \left ( \frac {3 e^2}{20 \pi \gamma} \right )^{1/5} Z^{2/5}

Empiricamente, per un nucleo di numero atomico A, si ha:

R \approx R_0 A^{1/3}

dove R0 è circa 1,2 fermi. Questa formula ricavata sperimentalmente mostra come la dimensione del nucleo dipenda esclusivamente dal numero di nucleoni: essi infatti si distribuiscono nello spazio in modo all'incirca uniforme, eccezion fatta per la zona più esterna dove i nucleoni tendono a rarefarsi leggermente.

La misura delle dimensioni del nucleo atomico viene effettuata nei centri di ricerca di fisica nucleare e nelle università sfruttando molteplici tecniche; quella che ha permesso di studiare pressoché tutti i nuclei stabili con ottimi risultati negli anni scorsi è stata lo scattering elettronico: elettroni accelerati ad alte energie vengono fatti scontrare con il nucleo atomico, una misura accurata del pattern con cui gli elettroni si dispongono dopo lo scontro permette di ottenere una misura molto accurata delle dimensioni dell'ostacolo che li ha diffratti, ovvero il nucleo. Lo svantaggio più grande di questa tecnica sta nel fatto che, avvalendosi delle reazioni elettromagnetiche tra gli elettroni ed il nucleo, essa permette di misurare solamente la distribuzione spaziale delle particelle cariche, ovvero dei soli protoni, mentre i neutroni vengono completamente ignorati. Altre tecniche comprendono lo scattering di particelle alfa, lo shift dei livelli energetici degli elettroni di valenza, shift dei livelli energetici dell'atomo muonico.

[modifica] La massa del nucleo

La massa contenuta nel nucleo corrisponde alla quasi totalità della massa atomica. Basti pensare che un atomo stabile contiene all'incirca lo stesso numero di elettroni protoni e neutroni, ma ogni nucleone pesa quasi 2000 volte di più di un elettrone.

La massa di un nucleo è data dalla somma della massa di ogni nucleone meno l'energia di legame, ovvero l'energia necessaria a riportare i nucleoni che compongono il nucleo al loro stato libero. Per fare un esempio: immaginiamo una serie di protoni e neutroni a riposo liberi nello spazio, la loro massa totale sarà equivalente alla somma totale delle masse del sistema e l'energia totale del sistema sarà data soltanto dalla massa come previsto dalla relatività. Ora immaginiamo gli stessi nucleoni legati all'interno di un nucleo: per riportare il sistema alla situazione precedente sarà necessario vincere la forza forte che li trattiene uniti applicando una forza in grado di spaccare il nucleo, ovvero introdurre energia. Questo significa che lo stato legato del nucleo è meno energetico dello stato libero, e, dato che il nucleo è a riposo e l'energia corrisponde alla massa come detto precedentemente, ne segue che la massa totale del primo stato è inferiore a quella del secondo. Analiticamente la massa nucleare viene calcolata attraverso la formula:

Mnucleo = Mneutrone + MprotoneB
neutroni protoni

dove B rappresenta l'energia di legame.

L'energia di legame dunque gioca un ruolo fondamentale all'interno del nucleo: essa è generata dalla saturazione dei campi generati dalla forza forte che tende a unire i nucleoni e dalla forza elettromagnetica che respinge i protoni. Essa è la responsabile della stabilità dei nuclei, e dunque anche della loro instabilità: un nucleo instabile (con ad esempio troppi neutroni o protoni) tenderà a decadere radioattivamente attraverso i decadimenti alfa o beta per raggiungere uno stato stabile. È grazie ad essa che siamo in grado di estrarre energia nucleare: i processi di fissione e fusione nucleare non sono altro che processi in cui l'energia di legame totale dopo la reazione risulta superiore a quella iniziale, ovvero i nuclei sono legati maggiormente e quindi la massa totale è inferiore.

[modifica] Modellizzare il nucleo

A livello teorico la fisica nucleare presenta notevoli difficoltà e a tutt'oggi non esiste una buona teoria nucleare esaustiva. Esistono comunque diversi modelli che spiegano solo alcune caratteristiche dei nuclei. Fra questi citiamo il modello a goccia nel quale il nucleo viene considerato come all'incirca come una goccia d'acqua, tale modello viene chiamato drop model e viene usato per spiegare il fenomeno della fissione nucleare.

Un secondo modello tratta i nucleoni come particelle che sottostanno alla meccanica quantistica. In modo abbastanza simile a come gli elettroni si dispongono in orbitali energetici attorno al nucleo che li lega a sé, i nucleoni si dispongono in livelli energetici. Tale modello viene chiamato shell model facendo riferimento proprio ai caratteristici orbitali nucleari in cui i nucleoni si disporrebbero. Tale modello, migliore dell'altro in quanto considera i nucleoni dal punto di vista quantistico, ha però il difetto che non essendoci una teoria valida per spiegare l'interazione nucleare, non si è ancora trovato un potenziale che esprima le forze di attrazione tra i nuclei, non riesce a spiegare che una piccola parte della complessa fenemonologia nucleare


(sezione in fase di sviluppo)

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com