CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Axiomes de Peano - Wikipédia

Axiomes de Peano

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

Les axiomes de Peano sont, en mathématiques, un ensemble d'axiomes de second ordre proposés par Giuseppe Peano pour définir l'arithmétique [1].

Sommaire

[modifier] Axiomes

La définition axiomatique des entiers naturels de Peano est usuellement décrite informellement par cinq axiomes :

  1. 0 est un entier naturel.
  2. Tout entier naturel n a un unique successeur, noté s\left(n\right) ou Sn.
  3. Aucun entier naturel n'a 0 pour successeur.
  4. Deux entiers naturels ayant même successeur sont égaux.
  5. Si un ensemble d'entiers naturels contient 0 et contient le successeur de chacun de ses éléments, alors cet ensemble est égal à \mathbb N.

Le premier axiome permet de poser que l'ensemble des entiers naturels n'est pas vide, le troisième qu'il possède un premier élément et le cinquième qu'il vérifie le principe de récurrence.

De façon plus formelle, le triplet \left(E,x,s\right) satisfait les propriétés suivantes :

  1. E est un ensemble, x est un élement de E, s est une application de E dans lui-même.
  2. x \notin s\left(E\right)
  3. s est injective
  4. Tout sous-ensemble F de E contenant x et stable par s (c'est-à-dire que s\left(F\right) \subset F) est égal à E.

Une telle structure est appelée structure de Dedekind-Peano (d'après le mathématicien Richard Dedekind) [2]

[modifier] Arithmétique de Peano

L'arithmétique de Peano est la restriction des axiomes de Peano au langage de l'arithmétique du premier ordre \{0,s,+,\cdot \}. Les variables du langage désignent des objets du domaine d'interprétation, ici des entiers. Dans ce langage du premier ordre, on ne dispose pas de variables pour les ensembles d'entiers, et on ne peut quantifier sur ces ensembles. On ne peut donc pas exprimer directement la récurrence par un énoncé tel que celui du paragraphe précédent (« tout sous-ensemble ... »). On considère alors qu'un sous-ensemble de \mathbb N est exprimé par une propriété de ses éléments, propriété que l'on écrit dans le langage de l'arithmétique.

Les axiomes de Peano deviennent alors les 7 axiomes suivants, auxquels s'ajoute, pour la récurrence, un schéma d'axiomes, qui représente une infinité dénombrable d'axiomes (un axiome pour chaque formule du langage) :

  1. \forall x \lnot (sx = 0)
  2. \forall x \exists y (\lnot x=0 \rightarrow sy=x )
  3. \forall x \forall y (sx=sy \rightarrow x=y)
  4. \forall x (x+0=x)
  5. \forall x \forall y (x+sy = s(x+y))
  6. \forall x (x\cdot 0=0)
  7. \forall x \forall y (x\cdot Sy = (x\cdot y) + x)
  8. Pour toute formule \phi(x,x_1,\ldots,x_n) à n + 1 variables libres, \forall x_1 \ldots \forall x_n \left( \left(\phi \left(0,x_1,\ldots ,x_n \right) \wedge \forall x \left(\phi \left(x,x_1,\ldots ,x_n \right)\rightarrow \phi \left(Sx,x_1,\ldots ,x_n \right) \right) \right)\rightarrow \forall x \phi \left(x,x_1,\ldots,x_n \right) \right)

Le schéma d'axiomes exprime bien la récurrence : dans la formule \phi(x,x_1,\ldots,x_n), les variables (x_1,\ldots,x_n) sont des paramètres, que l'on peut remplacer par des entiers arbitraires (p_1,\ldots,p_n). L'axiome pour la formule \phi(x,x_1,\ldots,x_n) devient, appliqué à (p_1,\ldots,p_n) :

\left( \left(\phi \left(0,p_1,\ldots ,p_n \right) \wedge \forall x \left(\phi \left(x,p_1,\ldots ,p_n \right)\rightarrow \phi \left(Sx,p_1,\ldots ,p_n \right) \right) \right)\rightarrow \forall x \phi \left(x,p_1,\ldots,p_n \right) \right)

Ce qui exprime bien que, si l'ensemble \left\{x \in \mathbb N\mid  \phi \left(x,p_1,\ldots,p_n \right)\right\} contient 0, et s'il contient le successeur de chacun de ses éléments, c'est \mathbb N.

Cependant, le schéma d'axiomes ne donne plus cette propriété que pour les sous-ensembles de \mathbb N qui se définissent dans le langage de l'arithmétique du premier ordre : une infinité dénombrable de sous-ensembles de \mathbb N.

On peut montrer que l'arithmétique de Peano ne peut être finiment axiomatisée, à moins de modifier le langage. Cela n'a donc pas forcément grand sens de chercher à minimiser les axiomes. On peut tout de même remarquer que l'axiome 2 pourrait être éliminé. Il se démontre par récurrence, une récurrence assez singulière, puisqu'il faut bien distinguer le cas 0 du cas successeur, mais que dans ce dernier cas, l'hypothèse de récurrence n'est pas utile.

[modifier] Existence et unicité

L'existence d'une structure de Dedekind-Peano peut être établie par une construction standard dans le cadre de la théorie des ensembles :

  • On définit la fonction successeur s en posant, pour tout ensemble a, s(a):=a \cup \{a\}.
  • On dit qu'un ensemble A est un ensemble inductif s'il est fermé par la fonction successeur, c'est-à-dire que si a \in A, alors S(a) \in A.
  • On définit alors la structure \left( \mathbf{N}, \empty, s|_\mathbf{N} \right) : \mathbf{N} est l'intersection de tous les ensemble inductifs contenant l'ensemble vide \empty et s|_\mathbf{N} est la restriction de s à \mathbf{N}. Cette structure satisfait les axiomes pré-cités. \mathbf{N} est l'ensemble des entiers naturels.

L'existence d'au moins un ensemble inductif est assurée par l'axiome de l'infini, l'ensemble \mathbf{N} est donc bien fondé. Cette construction n'est cependant pas unique. Par exemple, toujours en théorie des ensembles, il est courant de définir \mathbf{N} comme l'ensemble des ordinaux finis.

Deux structures de Dedekind-Peano \left( X,x,f \right) et \left( Y,y,g \right) sont dites isomorphes s'il existe une bijection \phi : X \rightarrow Y telle que φ(x) = y et φf = gφ. On peut montrer que toutes les structures de Dedekind-Peano sont isomorphes.

On trouve souvent la notation \mathbb{N} pour l'ensemble des entiers naturels.

[modifier] Opérations et ordre

L'addition et la multiplication sont définies sur \mathbf{N} par les axiomes de Peano.

L'addition sur \mathbf{N} est définie récursivement en posant a + 0 = a et a + s(b) = s(a + b) pour tout a et b. \left(\mathbf{N},+\right) est ainsi un monoïde commutatif d'élément neutre 0. Ce monoïde peut être plongé dans un groupe. Le plus petit groupe le contenant est celui des nombres entiers.

Puisque s(0) = 1, s(b) = s(b + 0) = b + s(0) = b + 1. Le successeur de b est simplement b + 1.

De façon analogue, en supposant que l'addition a été définie, la multiplication sur \mathbf{N} est définie en posant a\cdot 0=0 et a\cdot (b+1)=(a\cdot b)+a. \left(\mathbf{N},\cdot \right) est ainsi un monoïde commutatif d'élement neutre 1.

Il est finalement possible de définir un ordre total sur \mathbf{N} en posant que a \le b s'il existe un autre nombre c tel que a + c = b. \mathbf{N} est bien ordonné : tout ensemble non vide de nombres naturels possède un plus petit élément.

[modifier] Cohérence

En vertu du second théorème d'incomplétude de Gödel, la non-contradiction de ces axiomes entre eux n'est pas conséquence de ces seuls axiomes : on ne peut pas prouver la cohérence de l'arithmétique dans l'arithmétique.

Une structure de Dedekind-Peano est un modèle de ces axiomes. La construction ci-dessus fournit donc une preuve de cohérence des axiomes relativement à une théorie dans laquelle on peut définir ces structures, et formaliser la preuve de correction, par exemple la théorie axiomatique des ensembles de Ernst Zermelo. Il existe également des preuves de cohérence relative, notamment celle de Gerhard Gentzen qui fournit une mesure précise de la « force » de l'arithmétique : il suffit d'ajouter un principe d'induction jusqu'à l'ordinal dénombrable ε0 pour pouvoir démontrer la cohérence de l'arithmétique.

[modifier] Modèles non-standards

Un modèle de l'arithmétique de Peano qui n'est pas une structure de Dedekind-Peano, et n'est donc pas isomorphe à \mathbf{N} est dit « non-standard ».

Tout modèle non-standard de l'arithmétique contient les entiers naturels, que l'on appelle alors, entiers « standards », et qui sont les éléments du modèles que l'on peut désigner par des termes du langage, les autres éléments du modèle sont alors appelés entiers non-standards.

Plus précisément si \mathbf{N'}\, est un modèle non-standard de l'arithmétique, alors il existe une injection f de \mathbf{N} dans \mathbf{N'}\, telle que :

  • f(0) = 0\quad
  • \forall n, f(s(n)) = s(f(n))

On montre facilement, dans l'arithmétique de Peano, qu'un entier non-standard est nécessairement supérieur à un entier standard.

[modifier] Existence des modèles non-standards

  • Le théorème de compacité et le théorème de Lowenheim-Skolem assurent qu'il existe des modèles dénombrables non-standards de l'arithmétique de Peano qui vérifient exactement les mêmes formules du premier ordre que \mathbf{N}\,. Abraham Robinson fonde l'analyse non standard sur un modèle de l'arithmétique vérifiant en particulier cette condition.
  • Il existe également des modèles non-standards qui vérifient des formules du premier ordre fausses dans \mathbf{N}\,. Un énoncé vrai dans \mathbf{N}\, n'est pas démontrable dans l'arithmétique de Peano, si et seulement s'il existe un modèle non-standard dans lequel cet énoncé est faux. Les théorèmes d'incomplétude de Gödel ont donc pour conséquence l'existence de tels modèles (qui vérifient une formule exprimant que l'arithmétique de Peano est incohérente !) A contrario, on peut utiliser de tels modèles pour montrer que certains énoncés ne sont pas démontrables dans l'arithmétique de Peano.

[modifier] Voir aussi

[modifier] Liens internes

[modifier] Bibliographie

[1] G. Peano, 1Arithmetices principia, nova methodo exposita (« Les principes de l'arithmétique, nouvelle méthode d'exposition »), Bocca, Turin (1889)
[2] R. Dedekind, Was sind und was sollen die Zahlen? (« Que sont et que doivent être les nombres ? »), Braunschweig (1888)


Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Portail de la logique – Accédez aux articles de Wikipédia concernant la logique.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com