CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Espace topologique - Wikipédia

Espace topologique

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

En mathématiques, les espaces topologiques permettent de définir dans un contexte très général des concepts comme la convergence, la continuité et la connexité. Ces concepts apparaissent dans presque toutes les branches des mathématiques, ils sont donc centraux dans la vision moderne des mathématiques. La branche des mathématiques qui étudie ces espaces s'appelle la topologie.

La notion d'espace topologique est une définition axiomatique, formalisée par une structure ensembliste. Les axiomes sont minimaux, et en ce sens c'est la structure la plus générale pour étudier les concepts cités.

Cet article est technique, une vision générale et historique est donnée dans Topologie.

Sommaire

[modifier] Concepts

[modifier] Définitions

  • Un espace topologique est un couple (E\;, \Tau\;) où E\; est un ensemble et \Tau\; un ensemble de parties de E\;, que l'on appelle les ouverts de (E\;, \Tau\;),

vérifiant les propriétés suivantes :

  1. L'ensemble vide et E\; sont ouverts ;
  2. toute réunion d'ouverts est un ouvert,
    i.e. si (O_i)_{i\in I} est une famille d'éléments de \Tau\; alors \bigcup_{i \in I}O_i \in \Tau\;
  3. toute intersection de deux ouverts est un ouvert
    i.e. si O1 et O2 sont deux éléments \Tau\; alors O_1\cap O_2 \in \Tau\;
  • L'ensemble \Tau\; est appelée topologie de E\;.


  • Les fermés d'une topologie sont les complémentaires des ouverts. Par conséquent, la famille des fermés contient E\; et l'ensemble vide.

Il résulte de la théorie élémentaire des ensembles que toute intersection de fermé est un fermé, et que toute réunion finie de fermés est un fermés.

  • Il est d'usage de rappeler la présence de la partie vide à l'axiome 1 ; c'est toutefois en bonne rigueur superflu, puisqu'on peut l'obtenir en appliquant l'axiome 2 à la réunion indexée par l'ensemble vide.
  • Un des premiers rôles de la topologie est de décrire les voisinages des points. Cette notion permet de définir la texture du point, ou la matière qui l'entoure. Cette notion est clé pour comprendre la topologie. Elle sert par exemple à la définition de continuité ou de limite en un point. Cette notion est formalisée dans l'article voisinage. Rappelons ici simplement qu'une partie de E\; est un voisinage d'un point dès qu'elle contient un ouvert contenant ce point.

[modifier] Exemples

  • Un exemple simple est (\mathbb{N}, \mathcal{P}(\mathbb{N})). Tous les points sont des ouverts, ils sont donc isolés les uns des autres. La topologie ainsi définie est appelée topologie discrète. Plus généralement, la topologie discrète sur un ensemble X\,

est celle pour laquelle \Tau =\mathcal{P}(X)_,.

En contrepartie de la simplicité, elle n'offre pas beaucoup d'intérêt.

  • Autre exemple sans intérêt : la topologie grossière sur X\, est celle pour laquelle

les seuls ouverts sont la partie vide et X\, lui-même.

  • Un exemple plus intéressant sur les entiers est (\N, \mathcal F)\;\mathcal F\; désigne le filtre de Fréchet, c'est à dire tous les complémentaires d'ensembles finis et l'ensemble vide. Cette topologie donne un sens au voisinage de l'infini et permet par exemple de définir la notion de limite d'une suite.
  • L'article sur les voisinages démontre qu'il existe une topologie associée à tout espace métrique. Un ouvert O\; est alors un ensemble qui contient pour chaque point a\; de O\; une boule ouverte de centre a\;.
  • La topologie induite d'un sous ensemble F\; d'un ensemble E\; est la topologie obtenue par intersection des ouverts de E\; avec F\;. Cette définition permet par exemple de définir la topologie induite par celle de \R sur un intervalle, et ainsi de pouvoir définir les propriétés de continuité et de limite à des fonctions définies sur un intervalle de \R.
  • D'autres exemples de topologies plus sophistiquées sont données dans l'article voisinage
  • Le cube de Hilbert [0,1]^\N est une généralisation du cube en dimension infinie.

[modifier] Applications continues

[modifier] Définitions

Un des premiers intérêt de la notion d'espace topologique est de pouvoir définir une application continue. Il existe deux approches, celle locale donnée dans l'article voisinage et qui définit la continuité en un point et l'approche globale qui définit la continuité en tout point.

  • Définition globale. Une application f\; de A\;\rightarrow\;B \; entre deux espaces topologiques est dite continue si l'image réciproque f^{-1}(U)\; de tout ouvert U\; de B\; est un ouvert de A\; (l'image réciproque f^{-1}(U)\; est l'ensemble de tous les points de A\; que f\; envoie dans U\;).
  • Définition locale. Soit f\; une fonction d'un espace topologique E\; dans F\; et soit a\; un point élément du domaine de définition de f\;. La fonction f\; est continue au point a\; si et seulement si l'image réciproque d'un ouvert contenant f(a)\; contient un ouvert contenant a\;. Cet énoncé est équivalent à celui donné dans l'article voisinage.
  • Equivalence de la continuité locale en tout point et de la continuité globale. Si une application est globalement continue l'image réciproque d'un ouvert contenant f(a)\; contient elle-même qui est un ouvert contenant a\;. L'application est donc continue en tout point. Réciproquement, si l'application est continue en tout point alors son image réciproque contient pour chaque point un ouvert le contenant et inclu dans l'image réciproque. L'union de tous ses ouverts est par définition un ouvert et est égal à l'image réciproque. L'image réciproque est donc ouverte.

Une application bijective continue et dont la réciproque est continue est appelée un homéomorphisme.

La notion d'application continue est développée en détail dans l'article continuité.

[modifier] Exemples

  • L'application identité d'un espace topologique dans lui-même est continue. En effet l'image réciproque de tout ouvert est lui-même donc est ouvert.
  • Une application constante d'un espace topologique dans un autre est continue. En effet l'image réciproque est soit l'ensemble vide soit l'ensemble de départ tout entier.
  • l'application de \R dans \R qui à x\; associe x^2\; est continue. La preuve en est donnée dans l'article continuité.

[modifier] Limite

[modifier] Adhérence

Cette notion est développée dans un article spécifique Adhérence. Nous ne développerons cette notion que dans la mesure ou elle est nécessaire pour formaliser la notion de limite.

En topologie l'adhérence d'une partie X d'un espace topologique est le plus petit ensemble fermé qui contient cette partie. On la note souvent \overline X.

Une autre façon de définir les espaces topologiques consiste à faire appel à la notion prétopologique d'adhérence : on définit une adhérence sur un ensemble E comme une application qui à toute partie A de E associe une partie contenant A, l'adhérence de la partie vide restant vide. Dans le cas où l'adhérence est idempotente et où l'adhérence de l'union de deux parties est égale à l'union des adhérences, on dit que l'adhérence est topologique. Un espace topologique peut se définir comme un ensemble muni d'une adhérence topologique. Les ouverts sont alors les complémentaires des parties stables pour l'adhérence.

En termes d'adhérences, une application d'un espace topologique dans un autre est continue si et seulement si l'image d'un point adhérent à une partie est nécessairement adhérente à l'image de cette partie.

[modifier] Définition

La notion de limite, si elle existe, décrit le comportement qu'une fonction devrait avoir si elle était définie en ce point. L'exemple le plus simple est le cas d'une fonction définie sur un intervalle ouvert de \R, la limite est le concept qui permet de déterminer le comportement de la fonction aux bornes de cet intervalle.

Soit (E\;,\; \Tau)\; et (F\;,\; \Upsilon)\; deux espace topologiques. soit (E'\;,\; \Tau')\; un sous-espace de E\; muni de sa topologie induite et f\; une fonction de E'\; dans F\;. soit enfin un point a\; de \overline E'\; et l\; un point de F\;. Alors l\; est la limite de la fonction f\; au point a si et seulement si l'image réciproque d'un ouvert contenant l\; contient un ouvert de E'\; contenant a\;. Cet énoncé est équivalent à celui donné dans l'article voisinage. L'énoncé étant plus simple avec le formalisme des voisinages, c'est en général celui là qui est utilisé.

Remarque 1: la notion de limite est développé dans l'article Limite.

Remarque 2: si le point a est élément de l'ensemble E'\; alors la limite, si elle existe, est égale à f(a)\; et la fonction f\; est continue en a\;

[modifier] Propriétés

[modifier] Exemples


Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com