Nula matrico
El Vikipedio
En matematiko, aparte en lineara algebro, nula matrico estas matrico kun ĉiuj elementoj egalaj al nulo. Ekzemploj de nulaj matricoj:
Aro de matricoj de amplekso m×n kun elementoj en ringo K formas ringon . La nula matrico en estas matrico kun ĉiuj elementoj egalaj al , kie estas la alsuma idento en K.
La nula matrico estas alsuma idento en . Tio signifas ke por ĉiuj
Estas unu kaj nur unu nula matrico de ĉiu donita amplekso m×n havanta elementojn en donita ringo. Ĝenerala la nula ero de ringo estas unika kaj tipe estas signifita kiel 0 sen iu suba indico indikanta la gepatran ringon. Pro ĉi tiu la ekzemploj pli supre prezentas nulajn matricojn super ĉiu ringo.
La nula matrico prezentas la linearan transformon transformantan ĉiujn vektorojn en la nulan vektoron.
[redaktu] Vidu ankaŭ jenon:
- Identa matrico