Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Pi - Wikipedia

Pi

vanuit Wikipedia, die vrye ensiklopedie.

Die kleinletter pi
Vergroot
Die kleinletter pi

Die wiskundige konstante π (geskryf as "pi" wanneer die Griekse letter nie beskikbaar is nie, uitgespreek "pie") word algemeen in wiskunde en fisika gebruik. In Euclidiese meetkunde word π gedefinieer as óf die verhouding van 'n sirkel se omtrek tot sy deursnit, óf as die oppervlakte van 'n sirkel van radius 1 (die eenheidsirkel). Meeste moderne handboeke definieer π analities deur trigonometriese funksies te gebruik, soos b.v. as die kleinste positiewe x waarvoor sin(x) = 0, of twee maal die kleinste positiewe x waarvoor cos(x) = 0. Al hierdie definisies is ekwivalent.

Pi is ook bekend as Archimedes se konstante (nie dieselfde as Archimedes se nommer nie) en Ludolph se nommer.

Die numeriese waarde van π, afgerond tot 64 desimale plekke is:

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 5923

Inhoud

[wysig] Eienskappe

Pi is 'n irrasionele getal: dit beteken dat dit nie as die verhouding tussen twee heelgetalle geskryf kan word nie. Dié eienskap is in 1761 deur Johann Heinrich Lambert bewys. Daarbenewens is die getal transendent, soos bewys deur Ferdinand von Lindemann in 1882: dit beteken daar is geen polinoom met rasionele (of, ekwivalent, heeltallige) koëffisiënte waarvan π 'n wortel is nie.

'n Belangrike gevolg van die transendentaliteit van π is die feit dat dit nie konstrueerbaar is nie: dit beteken dat dit onmoontlik is om π uit te druk met 'n eindige hoeveelheid heelgetalle, breuke en hul vierkantswortels. Hierdie resultaat bewys dat dit onmoontlik is om 'n sirkel te kwadreer: dit is onmoontlik om 'n vierkant te konstrueer, deur net 'n liniaal en passer te gebruik, waarvan die area gelyk is aan die area van 'n gegewe sirkel. Die rede is dat alle koördinate van punte wat gekonstrueer kan word met 'n liniaal en passer, konstrueerbare getalle is.

Terwyl die oorspronklike Griekse letter vir pi foneties ekwivalent aan die Engelse letter p was, word dit deesdae soortgelyk aan die Engelse pie uitgespreek.

[wysig] Formules wat π betrek

[wysig] Meetkunde

Pi kom voor in baie formules in meetkunde wat sirkels en sfere betrek.

Meetkundige vorm Formule
Omtrek van 'n sirkel met radius r C = 2 \pi r \,\!
Oppervlak van 'n sirkel met radius r A = \pi r^2 \,\!
Oppervlak van 'n ellips met halfasse a en b A = \pi a b \,\!
Volume van 'n sfeer met radius r V = \frac{4}{3} \pi r^3 \,\!
Oppervlak van 'n sfeer met radius r A = 4 \pi r^2 \,\!
Volume van 'n silinder met hoogte h en radius r V = \pi r^2 h \,\!
Oppervlak van 'n silinder met hoogte h en radius r A = 2 ( \pi r^2 ) + ( 2 \pi r ) h = 2 \pi r (r + h) \,\!
Volume van 'n keël van hoogte h en radius r V = \frac{1}{3} \pi r^2 h \,\!
Oppervlak van keël met hoogte h en radius r A = \pi r \sqrt{r^2 + h^2} + \pi r^2 =  \pi r (r + \sqrt{r^2 + h^2}) \,\!

Verder ook is die hoekmeting 180° (in grade) gelyk aan π radiale.

[wysig] Analise

Baie formules in analise bevat π, insluitend oneindige reeks- en produkvoorstellings, integrale en sogenaamde spesiale funksies.

  • François Viète, 1593:
\frac2\pi= \frac{\sqrt2}2 \frac{\sqrt{2+\sqrt2}}2 \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2\ldots
  • Leibniz se formule (bewys):
\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}
Hierdie gereeld-aangehaalde oneindige reeks word gewoonlik soos bo geskryf, maar kan meer tegnies uitgedruk word as:
\sum_{n=1}^{\infty} (-1)^{n-1} \left (\frac{1}{2n-1}\right ) = \frac{\pi}{4}
  • Wallis se produk (bewys):
\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}
  • 'n Integraalformule vanuit calculus (sien ook die Errorfunksie en Normaalverspreiding):
\int_{-\infty}^{\infty} e^{-x^2}\,dx = \sqrt{\pi}
  • Basel se probleem, eerste opgelos deur Euler (sien ook Riemann zeta funksie):
\zeta(2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}
\zeta(4)= \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}
en in die algemeen, ζ(2n) is 'n rasionele veelvoud van π2n vir positiewe heelgetal n.
  • Gammafunksie geëvalueer by 1/2:
\Gamma\left({1 \over 2}\right)=\sqrt{\pi}
  • Stirling se benadering:
n! \sim \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n
  • Euler se identiteit (deur Richard Feynman genoem "die mees opmerklike formule in wiskunde"):
e^{\pi i} + 1 = 0\;
  • Eienskap van Euler se tosiëntfunksie (sien ook Fareyreeks):
\sum_{k=0}^{n} \phi (k) \sim 3 n^2 / \pi^2
  • Oppervlak van 'n kwart van die eenheidsirkel:
\int_0^1 \sqrt{1-x^2} = {\pi \over 4}

[wysig] Komplekse analise

  • 'n Spesiale geval van Euler se formule
e^{i\pi}\,\!+1=0
  • 'n Toepassing van die residuteorema
\oint\frac{dz}{z}=2\pi i

[wysig] Aangehoude breuke

Pi het vele aangehoude breukvoorstellings, onder andere:

\frac{4}{\pi} = 1 + \frac{1}{3 + \frac{4}{5 + \frac{9}{7 + \frac{16}{9 + \frac{25}{11 + \frac{36}{13 + ...}}}}}}

(Sien ander voorstellings by The Wolfram Functions Site.)

[wysig] Getalteorie

'n Paar resultate vanuit getalteorie:

  • Die waarskynlikheid dat twee ewekansige heelgetalle kopriem is, is 6/π2.
  • Die waarskynlikheid dat 'n ewekansige heelgetal wortelvry is, is 6/π2.
  • Die gemiddelde hoeveelheid maniere om 'n positiewe heelgetal as die som van twee perfekte vierkante (orde is belangrik) te skryf, is π/4.

Hier word "waarskynlikheid", "gemiddeld" en "ewekansig" in die beperking van 'n limiet geneem, d.w.s., ons oorweeg die waarskynlikheid vir 'n stel heelgetalle {1, 2, 3, ..., N}, waar die limiet van N na oneindigheid streef.

[wysig] Dinamiese stelsels / ergodiese teorie

In dinamiese stelselteorie (sien ook ergodiese teorie), vir amper elke reëele x0 in die interval [0,1], geld

\lim_{n \to \infty} \frac{1}{n} \sum_{i = 1}^{n} \sqrt{x_i} = \frac{2}{\pi}\,,

waar xi die iterate van die Logistieke kaart van r = 4 is.

[wysig] Fisika

Formules uit fisika:

  • Heisenberg se onsekerheidseienskap:
\Delta x \Delta p \ge \frac{h}{4\pi}
  • Einstein se veldvergelyking van algemene relatiwiteit:
R_{ik} - {g_{ik} R \over 2} + \Lambda g_{ik} = {8 \pi G \over c^4} T_{ik}
  • Coulomb se wet vir elektriese krag:
F = \frac{\left|q_1q_2\right|}{4 \pi \epsilon_0 r^2}

[wysig] Waarskynlikheid en statistiek

In waarskynlikheid en statistiek is daar baie verspreidings wat se formule π bevat, insluitend:

  • waarskynlikheidsdigtheidsfunksie (wdf) vir die normaalverspreiding met gemiddelde μ en standaardafwyking σ:
f(x) = {1 \over \sigma\sqrt{2\pi} }\,e^{-(x-\mu )^2/(2\sigma^2)}
  • wdf vir die (standaard) Cauchyverspreiding:
f(x) = \frac{1}{\pi (1 + x^2)}

Let daarop dat die boonste formules ander integraalformules vir π kan voortbring omdat \int_{-\infty}^{\infty} f(x)\,dx = 1 vir enige wdf f(x).

'n Interessante empiriese benadering van π is gebaseer op die probleem van Buffon se naald. Beskou die val van 'n naald met lengte L aanhoudend op 'n oppervlak met parallelle lyne S eenhede uit mekaar (met S > L). Indien die naald n keer laat val word, en x keer tot ruste kom en 'n lyn oorkruis (x > 0), dan kan π benader word deur:

\pi \approx \frac{2nL}{xS}

[wysig] Geskiedenis

Die simbool "π" vir Archimedes se konstante is eerste in 1706 deur William Jones voorgestel toe hy A New Introduction to Mathematics gepubliseer het, alhoewel dieselfde simbool reeds vroeër gebruik was om die omtrek van 'n sirkel aan te dui. Die skryfwyse het algemeen geword ná dit deur Leonhard Euler aangeneem is. In iedergeval, π is die eerste letter van περιμετρος (perimetros), wat beteken 'rondom meet' in Grieks.

[wysig] Numeriese benaderings van π

As gevolg van die transendente aard van π is daar geen geslote-vorm uitdrukkings vir π nie. Daarom moet numeriese berekenings benaderings tot die getal gebruik. Vir baie doeleindes is 3.14 of 22/7 naby genoeg, alhoewel ingenieurs gereeld 3.1416 (5 beduidende syfers) of 3.14159 (6 beduidende syfers) gebruik vir beter akkuraatheid. Die benaderings 22/7 en 355/113, met 3 en 7 beduidende syfers respektiewelik, word verkry uit die eenvoudige aangehoue breukuitbreiding van π.

'n Egiptiese skrywer genaamd Ahmes is die bron van die oudste bekende teks wat 'n benadering vir π gee. Die papirusrol dateer terug na die 17de eeu v.C., en beskryf die waarde in só 'n manier dat die resultaat verkry word uit 256/81 of 3.160.

Die Chinese wiskundige Liu Hui het π bereken tot 3.141014 (korrek tot drie desimale plekke) in 263, en het voorgestel dat 3.14 'n goeie benadering is.

Die Indiese wiskundige en sterrekundige Aryabhata het 'n akkurate benadering vir π gegee. Hy skryf "Tel vier by eenhonderd, vermenigvuldig met agt en tel dan twee-en-sestigduisend by. Die resultaat is ongeveer die omtrek van 'n sirkel met deursnit van twintigduisend. Deur hierdie reël word die verhouding van die omtrek tot die diameter gegee." In ander woorde, (4+100)×8 + 62000 is die omtrek van die sirkel met radius 20000. Dit verskaf 'n waarde van π = 62832/20000 = 3.1416, korrek tot vier desimale plekke.

Die Chinese wiskundige en sterrekundige Zu Chongzhi het π tot 3.1415926 en later tot 3.1415927 bereken, en het twee benaderings (355/113 en 22/7) gelewer in die 5de eeu.

Die Iranse wiskundige en sterrekundige Ghyath ad-din Jamshid Kashani (1350-1439) het π tot 9 plekke bereken in die basis 60, wat ooreenstem met 'n 16-syfer desimale getal as volg:

2 π = 6.2831853071795865

Die Duitse wiskundige Ludolph van Ceulen (rondom 1600) het die eerste 35 desimale plekke bereken. Hy was só trots op hierdie deurbraak gewees dat hy dit op sy grafsteen laat skryf het.

Die Sloveense wiskundige Jurij Vega het in 1789 die eerste 140 desimale plekke vir π bereken, waarvan die eerste 137 korrek was en die wêreldrekord vir 52 jaar behou het, todat William Rutherford in 1841 208 desimale plekke bereken het, waarvan die eerste 152 korrek was. Vega het John Machin se formule van 1706 verbeter, en sy metode word steeds vandag genoem.

Geen van die bogenoemde formules kan gebruik word as 'n maklike manier om π mee te benader nie. Vir vinnige berekenings kan mens formules soos Machin s'n gebruik:

\frac{\pi}{4} = 4 \arctan\frac{1}{5} - \arctan\frac{1}{239},

tesame met die Taylorreeksuitbreiding van die funksie arctan(x). Hierdie formule is maklik nagegaan deur poolkoördinate van komplekse getalle te gebruik, beginnende met

(5+i)^4\cdot(-239+i)=-114244-114244i.

Uiters lang desimale uitbreidings van π word tipies deur die Gauss-Legendre algoritme en Borwein se algoritme bereken; die Salamin-Brent algoritme, wat in 1976 uitgevind is, is ook in die verlede gebruik.

Die eerste een miljoen syfers van π en 1/π is beskikbaar van Project Gutenberg (sien eksterne skakels hieronder). Die huidige rekord (Desember 2002) staan by 1,241,100,000,000 syfers, wat in September 2002 op 'n 64-nodus Hitachi superrekenaar met 1 teragreep hoofgeheue bereken, wat 2 triljoen berekenings per sekonde uitvoer, nagenoeg twee keer soveel as die rekenaar gebruik vir die vorige rekord van 206 biljoen syfers. Die volgende Machin-agtige formules is gebruik hiervoor:

\frac{\pi}{4} = 12 \arctan\frac{1}{49} + 32 \arctan\frac{1}{57} - 5 \arctan\frac{1}{239} + 12 \arctan\frac{1}{110443}
K. Takano (1982).
\frac{\pi}{4} = 44 \arctan\frac{1}{57} + 7 \arctan\frac{1}{239} - 12 \arctan\frac{1}{682} + 24 \arctan\frac{1}{12943}
F. C. W. Störmer (1896).

Hierdie benaderings het soveel syfers dat dit nie meer van praktiese nut is nie, behalwe om nuwe superrekenaars te toets en (natuurlik) om nuwe π-berekeningsrekords op te stel.

In 1996 het David H. Bailey, tesame met Peter Borwein en Simon Plouffe, 'n nuwe formule vir π ontdek as 'n oneindige reeks:

\pi = \sum_{k = 0}^{\infty} \frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6}\right)

Hierdie formule laat dit toe om maklik die ke binêre of hexadesimale syfer van π te bereken, sonder om die vorige k− 1 syfers hoef te bereken het. Bailey se webwerf bevat die afleiding sowel as implimentasies in verskeie programmeertale. Die PiHex-projek het 64 bits rondom die kwadriljoenste bit van π bereken, wat uitgedraai het om 'n 0 te wees.

Ander formules wat gebruik is om benaderings van π te bereken sluit in:

\frac{\pi}{2}= \sum_{k=0}^\infty\frac{k!}{(2k+1)!!}= 1+\frac{1}{3}\left(1+\frac{2}{5}\left(1+\frac{3}{7}\left(1+\frac{4}{9}(1+...)\right)\right)\right)
Newton.
\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum^\infty_{k=0} \frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}
Ramanujan.
\frac{1}{\pi} = 12 \sum^\infty_{k=0} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2}}
David Chudnovsky en Gregory Chudnovsky.
{\pi} = 20 \arctan\frac{1}{7} + 8 \arctan\frac{3}{79}
Euler.

[wysig] Oop vrae

Die mees belangrike vraag oor π is of dit 'n normale getal is, d.w.s., of enige syferblok statisties net soveel voorkom in die uitbreiding van π as in enige ander ewekansige produksie. Dit moet waar wees in enige basis, nie net basis 10 nie. Huidige kennis in hierdie rigting is baie swak; dit is byvoorbeeld nie bekend watter van die syfers 0,...,9 oneindig baie in die desimale uitbreiding van π voorkom nie.

Bailey en Crandall het in 2000 gewys dat die bestaan van die bogenoemde Bailey-Borwein-Plouffeformule en soortgelyke formules impliseer dat die normaliteit in basis 2 van π en verskeie ander konstante gereduseer kan word na 'n geloofwaardige hipotese van chaosteorie. Sien Bailey se bogenoemde webwerf vir meer details.

Dit is ook onbekend of π en e algebraïes onafhanklik is, d.w.s. of daar 'n polinoomverwantskap tussen π en e met rasionele koëffisiënte bestaan.

[wysig] π-kultuur

14 Maart (3/14) is "Pi Dag", wat deur baie liefhebbers van π gevier word, en op 22 Julie (22/7) word "Pi Benaderingsdag" gevier.

In Engels word daar van "pi o'clock" gepraat, wat 3:14:15 voorstel.

'n Ander voorbeeld van wiskunde-humor is hierdie benadering van π: Neem die getal "1234", en ruil die eerste twee syfers en die laaste twee syfers om, sodat die getal "2143" word. Deel hierdie getal deur "twee-twee" (22, sodat 2143/22 = 97.40909...). Neem die twee-kwadraatste wortel (4de wortel) van hierdie getal. Die uiteindelike getal is merkwaardig naby aan π: 3.14159265.

[wysig] Verwante artikels

  • Griekse letter pi
  • Calculus
  • Meetkunde
  • Trigonometriese funksie

[wysig] Eksterne skakels

[wysig] Syferbronne

[wysig] Berekening

[wysig] Algemeen

[wysig] Memorisering

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com