河外星系
维基百科,自由的百科全书
-{T|zh-cn:射电望远镜;zh-tw:電波望遠鏡}-
河外星系,简称为星系,是位于银河系之外、由几十亿至几千亿颗恒星、星云和星际物质组成的天体系统。目前已发现大约10亿个河外星系。银河系也只是一个普通的星系。
星系是受到重力束縛的恆星、星際氣體和塵埃、以及暗物質的大質量系統。典型的星系包含千萬至兆(107 to 1012) 顆恆星,全都環繞著共同的重力中心。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統和星團以及各種不同的星雲。大部分星系的直徑距離都在數千至數十萬光年的尺度上,彼此間的距離則為數百萬光年的數量級。.
雖然理論上暗物質大約佔了星系質量的90%,但我們對這些看不見物質的本質了解的很少。一些證據顯示超重黑洞即使不是全部,也存在於絕大多數的星系核心內。
星系際空間,存在於星系之間的空間,充滿了稀薄的電漿,平均密度小於每立方公尺一個原子。估計在可觀測的宇宙中星系的數量超過了一千億個。
目录 |
[编辑] 特征
星系大小差异很大。椭圆星系直径在3300光年到49万光年之间;漩涡星系直径在1.6万光年到16万光年之间;不规则星系直径大约在6500光年到2.9万光年之间。
星系的质量一般在太阳质量的100万到10000亿倍之间。
星系内部的恒星在运动,而星系本身也在自转,整个星系也在空间运动。
星系具有红移现象,说明这些星系在空间视线方向上正在离我们越来越远。这也是大爆炸理论的一个有力证据。
星系在大尺度的分布上是接近均匀的;但是小尺度上来看则很不均匀。例如大麦哲伦星系和小麦哲伦星系组成双重星系,它们又和银河系组成三重星系。
[编辑] 詞源
星系一詞源自於希臘文中的galaxias(γαλαξίας)、kyklos galaktikos,意譯作星空中「奶狀的圓圈」。在希臘神話中,宙斯把他兒子放在一個女神的懷抱中,由女神餵奶。當時女神正在神智不清之狀態,當她一醒來時,知道她正在餵養一個不知名的孩子,結果她把孩子推開,奶汁散佈在星空中,形成星系。
[编辑] 觀測簡史
對我們自己的銀河系和其他星系的調查開始於詹姆斯·畢倪和邁克爾·馬黎·費爾德的報告書:星系天文學(Galactic astronomy )。[1]
在1610年,伽利略使用他的望遠鏡研究天空中明亮的帶狀物,也就是當時所知的銀河,並且發現它是數量龐大但光度暗淡的恆星聚集而成的。在1755年的一篇論文,伊曼紐爾·康得,借鑒更早期由托馬斯·懷特工作完成的素描圖,推測(正確的)星系可能是由數量龐大的恆星轉動體,經由重力的牽引聚集在一起,就如同我們的太陽系,只是規模更為龐大。恆星聚集成盤狀,我們由盤內透視的效果,將會看成一條在夜空中的光帶。康得也猜想某些在夜空中看見的星雲可能是獨立的星系。
在18世紀接近尾聲時,梅西爾完成了梅西爾目錄,收錄了103個明亮的星雲。不久之後,威廉·赫協爾也完成了收錄多達5,000個星雲的目錄。在1845年,羅斯勳爵建造了一架新的望遠鏡,能夠區分出橢圓星系和螺旋星系,他也在這些星雲中找到了一些獨立的點,為康得早先的說法提供了證據。但是,星雲仍未能獲得一致認同是遙遠的星系,直到1920年代早期哈柏使用新的大望遠鏡才獲得確認。哈柏分辨出螺旋星系外圍中單獨的恆星,並且辨認出其中有些是造父變星,因而可以估計出這些星雲狀天體的距離:她們的距離實在太遠,以致不可能是銀河系的一部分。在1936年,哈柏制定了現在被稱為哈柏序列,並仍被使用的星系分類法。 第一位嘗試描述銀河系的形狀和太陽位置的天文學家是威廉·赫協爾,他在1785年小心的計算天空中在不同區域的恆星數目,得到了太陽系在中心的橢圓星系的圖像,這與1920年卡普坦得到的結果非常類似,只是比較小些(直徑大約15,00秒差距)。哈洛·夏普利使用另一種不同的方法,建立在球狀星團的分布上,得到了一幅完全不同的圖像:一個直徑約70,000秒差距的扁平盤狀,而且太陽在遠離中心的位置上。但兩者的分析都沒有考慮到星際塵埃在銀河盤面上造成的光線的吸收的量;一旦羅伯特·朱利葉斯·莊普勒在1930年經由研究疏散星團確定了這個作用之後,我們現在所認知的銀河系圖樣就浮現出來了。
在1944年,亨德力克·赫爾斯特預言氫原子會輻射出21公分波長的微波,結果在1951年便發現來自星際氫原子的輻射線。這條輻射線允許對星系做更深入的研究,因為他不會被星際塵埃吸收,並且來自他的都卜勒位移能夠映射出星系內氣體的運動。這些觀測導致轉動的假定,分辨出在星系中心的棒狀結構,配合無線電望遠鏡,在其他星系的氫原子也能被追蹤到。在1970年,維拉·魯賓的研究發現星系可見的總質量(恆星和氣體)不能適當的說明星系中氣體的轉動速度。如今星系自轉問題已經用於解釋未能觀察到的大量暗物質。
從1990年代開始,哈柏太空望遠鏡提高了觀測的效益,尤其是,他確認了神祕的暗物質不可能是在星系中的暗弱小天體。哈柏深空視場,對天空的一個區域進行極長時間的曝光,提供了宇宙中可能有多達1,750億個星系的可能證據。在不可見光的光譜偵測技術上的改進(無線電望遠鏡、紅外線攝影機、X射線望遠鏡),讓人類可以見到連哈柏太空望遠鏡也看不見的其他星系。特別是,對天空中隱匿帶(天空中被銀河系遮蔽的部份)的星系巡天,揭露了相當數量的新星系。
[编辑] 星系分類
- 主條目:星系分類
星系主要分成三類:橢圓星系、螺旋星系和不規則星系。對星系類型更明確與廣泛的描述會在哈柏序列的條目中敘述。因為哈柏序列是根據視覺的型態,他也許會錯過某些星系的重要特徵,例如恆星形成率(在星爆星系或活躍星系的核心)。
[编辑] 橢圓星系
- 主條目:橢圓星系
哈柏分類法根據橢圓星系橢率的估計進行分類,從E0,接近圓形的,到E7,非常瘦長的。這些星系,不論視線的角度是如何,都有著橢圓形的外觀。她們看似沒有任何的結構,而且相對來說星際物質的成分也很少。通常這些星系會有少量的疏散星團和少量新形成的恆星,取而代之的是老年的,與以各種不同方向環繞星系的中心,已經成熟的恆星為主。她們的一些性質類似小了許多的球狀星團。[2]
大部分的星系都是橢圓星系,許多橢圓星系相信是經由星系的交互作用,碰撞或是合併,產生的。她們可以長成極大的體積(與螺旋星系比較)而且巨大的橢圓星系經常出現在星系群的中心區域。[3]星爆星系是星系碰撞後的結果,可能導致巨大橢圓星系的形成。[2]
[编辑] 螺旋星系
在螺旋星系,螺旋臂的形狀近似對數螺線,在理論上顯示這是大量恆星一致轉動造成的一種干擾模式。像恆星一樣,螺旋臂也繞著中心旋轉,但是旋轉的角速度並不是常數,這意味著恆星會穿越過螺旋臂,螺旋臂則是高密度區或是密度波。當恆星進入螺旋臂,他們會減速,因而創造出更高的密度;這就類似波將在高速公路上的車速延緩一樣。螺旋臂能被看見,是因為高密度促使恆星在此處誕生,因而螺旋臂上有許多明亮和年輕的恆星。
我們自己的星系,銀河系,有時就簡稱為銀河,是一個有巨大星系盤的棒渦星系,直徑大約三萬秒差距或是十萬光年,厚度則約為三千光年;擁有約三千億顆恆星(3×1011)和大約六千億顆太陽的質量。
[编辑] 矮星系
- 主條目:矮星系
Despite the prominence of large elliptical and spiral galaxies, most galaxies in the universe appear to be dwarf galaxies. These tiny galaxies are about one hundred times smaller than the Milky Way, containing only a few billion stars. Many dwarf galaxies may orbit a single larger galaxy; the Milky Way has at least a dozen such satellites. Dwarf galaxies may also be classified as elliptical, spiral or irregular. Since small dwarf ellipticals bear little resemblance to large ellipticals, they are often called dwarf spheroidal galaxies instead.
[编辑] 活躍星系
- 主條目:活躍星系核
A portion of the galaxies we can observe are classified as active. That is, a significant portion of the total energy output from the galaxy is emitted by a source other than the stars, dust and interstellar medium. The standard model for such active galactic nucleus is based upon energy generation from matter falling into a supermassive black hole at the core region.
Galaxies that emit high-energy radiation in the form of x-rays are classified as Seyfert galaxies, quasars and blazars. Active galaxies that emit radio frequencies from relativistic jets erupting from the core are classified as Radio galaxies. A unified model of these types of active galaxies explains their differences based on the viewing angle of the observer.
[编辑] 大尺度結構
Very few galaxies exist by themselves; these are known as field galaxies. Most galaxies are gravitationally bound to a number of other galaxies. Structures containing up to about 50 galaxies are called groups of galaxies, and larger structures containing many thousands of galaxies packed into an area a few megaparsecs across are called clusters. Clusters of galaxies are often dominated by a single giant elliptical galaxy, which over time tidally destroys its satellite galaxies and adds their mass to its own. Superclusters are giant collections containing tens of thousands of galaxies, found in clusters, groups and sometimes individually; at the supercluster scale, galaxies are arranged into sheets and filaments surrounding vast empty voids. Above this scale, the universe appears to be isotropic and homogeneous.
Our galaxy is a member of the Local Group, a relatively small group of galaxies that has a diameter of approximately one megaparsec.[來源請求] The Milky Way and the Andromeda Galaxy are the two brightest galaxies within the group. Many of the other member galaxies are dwarf companions of these two galaxies.[來源請求] The Local Group itself is a part of a cloud-like structure within the Virgo Supercluster, a large, extended structure of groups and clusters of galaxies centered around the Virgo Cluster.[4]
[编辑] 星系的形成和演化
- 主條目:星系演化
星系之形成和演化向來都眾說紛紜,有些已經被廣泛接受,但仍然有不少人質疑。
星系的形成包含了兩方面,一是上下理論,二是下上理論。上下理論是指:星系乃由一次宇宙大爆炸中形成,發生在數億年前。另一個學說則是指:星系乃由宇宙中旳微塵所形成。原本宇宙有大量的球狀星團(globular cluster),後來這些星體相互碰撞而毁滅,剩下微塵。這些微塵經過組合,而形成星系。
雖然在今時今日,關於星系形成的學問有不少人質疑,但大抵在星系形成研究方面,隨著研究的深入,已伸展至星系演化方面。在天文物理學中,有關星系形成和演化的問題有:
- 在一個均質的宇宙中,我們是否居住在一個獨特而與眾不同的場所?
- 星系是如何形成的?
- 星系是如何隨著時間改變的?
[编辑] 星系生物學
- 主條目:Extraterrestrial life
Biology as we know it is currently assumed to exist only around single, third-generation G-type stars in the middle regions of the spiral arms of spiral galaxies, like the sun. Elliptical galaxies, produced as a result of many galactic collisions, quickly lose their clouds of interstellar hydrogen gas, and cannot make new generations of stars. Irregular galaxies have few elderly stars and thus seem to have low concentrations of the heavier elements on which Earth-like biology depends. Even within spiral galaxies biology as we know it would appear to be limited to the middle reaches of the spiral arm, as in the galactic halo or outer spiral arms heavier elements are in short supply, whilst in the gas clouds around the galactic centre heavier elements are in concentrations too high, and interstellar interactions are too frequent to allow earth-sized planets to form in stable circular orbits around their stars.
[编辑] 相關條目
- Active galaxy
- Barred spiral galaxy
- Dwarf galaxy
- Dwarf elliptical galaxy
- Dwarf spheroidal galaxy
- Elliptical galaxy
- Galaxy classification
- Galaxy formation and evolution
- Groups and clusters of galaxies
- Interacting galaxy
- Irregular galaxy
- Lenticular galaxy
- List of galaxies
- List of nearest galaxies
- Radio galaxy
- Ring galaxy
- Spiral galaxy
- Starburst galaxy
- Seyfert galaxy
- Timeline of galaxies, clusters of galaxies, and large scale structure
[编辑] 參考資料
- ↑ James Binney and Michael Merrifield: Galactic astronomy, Princeton University Press, 1998
- ^ 2.0 2.1 Elliptical Galaxies Leicester University Physics Department (2005) - 於2006-06-08造訪。
- ↑ Galaxies Cornell University (October 20, 2005) - 於2006-08-10造訪。
- ↑ R. B. Tully (1982). "The Local Supercluster". Astrophysical Journal 257: 389-422.
- Terence Dickinson: The Universe and Beyond (Fourth Edition), Firefly Books Ltd. 2004, 2004
[编辑] 外部鏈結
- Galaxies, SEDS Messier pages
- An Atlas of The Universe
- Galaxies - Information and amateur observations
- The Oldest Galaxy Yet Found
- The Oldest Star found in the Galaxy
- Galaxies - discussed on BBC Radio 4's "In Our Time" programme
[编辑] 資料來源