Privacy Policy Cookie Policy Terms and Conditions Termodinamik - Vikipedi

Termodinamik

Vikipedi, özgür ansiklopedi

Termodinamik, (Yunancada: thermos:ısı ve dynamic:değişim). Bazı Türkçe kaynaklarda ısıl devingi olarak da geçer. Enerji, ısı, ve entropi gibi fiziksel kavramlarla ilgilenen bilim dalı. Termodinamik yasalarının istatistiksel mekanikten türetilebileceği gösterilmiştir.

Sadi Carnot (1837-1894). Termodinamik biliminin kurucusu olarak kabul edilir.
Sadi Carnot (1837-1894). Termodinamik biliminin kurucusu olarak kabul edilir.

Termodinamik her ne kadar sistemlerin madde ve/veya enerji alış-verişiyle ilgilense de, bu işlemlerin hızıyla ilgilenmez. Bundan dolayı aslında termodinamik denilirken, denge termodinamiği kastedilir. Bu yüzden termodinamiğin ana kavramlarından biri "quasi-statik" (yarı-durağan) adı verilen, idealize edilmiş "sonsuz yavaşlıkta" olaylardır. Zamana bağlı termodinamik olaylarla, denge halinde olmayan termodinamik ilgilenir.

Termodinamik yasaları çok genel bir geçerliliğe sahiptirler ve karşılıklı etkileşimlerin ayrıntılarına veya incelenen sistemin özelliklerine bağlı olarak değişmezler. Yani bir sistemin sadece madde veya enerji giriş-çıkışı bilinse dahi bu sisteme uygulanabilirler.

Konu başlıkları

[değiştir] Termodinamik değişkenler

Bu değişkenler genellikle sistemin ya kendisini, ya da çevre koşulları tarif etmek için kullanılır. En çok kullanılanlar ve simgeleri şunlardır:

Mekanik değişkenler:
  • Basınç: P
  • Hacim: V
İstatistiksel değişkenler:
  • Sıcaklık: T
  • Entropi (düzensizlik): S

Mekanik değişkenler, temel klasik veya parçacık fiziği tanımlarıyla tarif edilebilirken, istatistiksel değişkenler sadece istatistiksel mekanik tanımlarıyla anlaşılabilir.

Termodinamiğin çoğu uygulamasında, bir ya da daha çok değişken sabit tutulurken, diğer değişkenlerin bunlara göre nasıl değiştiği incelenir ve bu da sistemin matematiksel olarak (n sabit tutulmayan değişkenlerin sayısı olmak üzere) n boyutlu bir uzay olarak tarif edilebileceği anlamına gelir. İstatistiksel mekaniği fizik yasalarıyla birleştirerek, bu değişkenleri birbirleri cinsinden ifade edecek "durum denklemleri" yazılabilir. Bunların en basit ve en önemli olanlarından biri ise ideal gaz yasasıdır.

P\cdot V = n\cdot R\cdot T

Bu denklemde R evrensel gaz sabiti'dir. Ayrıca istatistiksel mekanik terimleriyle bu denklem şöyle yazılır:

P\cdot V = N\cdot k\cdot T

Bu denklemde de k Boltzmann sabiti'dir.

[değiştir] Termodinamik potansiyeller

Termodinamik değişkenler vasıtasıyla dört tane termodinamik potansiyel tanımlanabilir:

Sistemin İç Enerjisi E:\, dE = T\cdot dS - P\cdot dV\,
Helmholtz Serbest Enerjisi A:\, dA = - S\cdot dT - P\cdot dV\,
Gibbs Serbest Enerjisi G:\, dG = -S\cdot dT + V\cdot dP\,
Entalpi H:\, dH = T\cdot dS + V\cdot dP\,

Bu dört potansiyelin diferansiyel denklemlerini ve zincirleme türev kuralını kullanarak bu dört potansiyel, değişkenler ve birbirleri cinsinden yazılabilir:


E = H - P\cdot V = A + T\cdot S
A = E - T\cdot S = G - P\cdot V
G = A + P\cdot V = H - T\cdot S
H = G + T\cdot S = E + P\cdot V



[değiştir] Termodinamik yasaları

Sıfırıncı Yasa

Temodinamiğin en basit yasasıdır. Eğer iki sistem birbirleriyle etkileşim içerisindeyken aralarında ısı veya madde alışverişi olmuyorsa bu sistemler termodinamik dengededirler. Sıfırıncı yasa şöyle der:

Eğer A ve B sistemleri termodinamik dengedeyseler, ve B ve C sistemleri de termodinamik denge içerisindeyseler, A ve C sistemleri de termodinamik denge içerisindedirler.

Daha basit bir ifadeyle farklı sıcaklıklarda iki cisim ısıl bakımdan temas ederse sıcak olan cisim soğur, soğuk olan cisim ısınır. İşin temelinde, iki farklı sıcaklığa sahip iki cisim arasında gerçekleşen ısı akışının sıcak cisimden soğuk cisme gerçekleştiği gerçeği yatar, bazı soğuk cisimlerin sıcak, ya da bazı sıcak cisimlerin soğuk algılanması mümkündür. –30 derece soğuk olarak düşünülebilirse de –50 dereceye göre daha sıcaktır. Isı akışının soğuktan sıcağa doğru olmayışının temeli şudur: sıcaklık, malzeme atomlarının, daha doğrusu elektronlarının kinetik enerjisine etki eden bir faktördür. Elektronlar her zaman temel enerji seviyesinde olacak şekilde davranış gösterirler. Fazla kinetik enerjilerini aktarmak ve temel enerji seviyesine dönmek isterler. Sıcaklık, malzeme içinde atomların titreşmesi ile iletilir. Bu nedenledir ki, ısı akışı sıcak cisimden soğuk cisime doğru gerçekleşir.

1931 yılında R.H. Fowler tarafından tanımlanan bu yasa, temel bir fizik ilkesi olarak karşımıza çıktığından, doğal olarak 1. ve 2. yasalardan önce gelmek zorunluluğu doğmuş ve sıfırıncı yasa adını almıştır.


Birinci Yasa

Tipik bir termodinamik sistem: ısı sıcak kaynatıcıdan soğuk yoğunlaştırıcıya doğru hareket eder ve bu sayede bir iş ortaya çıkar.
Tipik bir termodinamik sistem: ısı sıcak kaynatıcıdan soğuk yoğunlaştırıcıya doğru hareket eder ve bu sayede bir iş ortaya çıkar.

Bir sistemin iç enerjisindeki artış: sisteme verilen ısı ile, sistemin çevresine uyguladığı iş arasındaki farktır.

U2 – U1 = Q – W

Bu yasa "enerjinin korunumu" olarak da bilinir. Enerji yoktan var edilemez ve yok edilemez sadece bir şekilden diğerine dönüşür. Bir sistemin herhangi bir çevrimi için çevrim sırasında ısı alışverişi ile iş alışverişi aynı birim sisteminde birbirlerine eşit farklı birim sistemlerinde ise birbirlerine orantılı olmak zorundadır. Bu ifadelerin yapılan deneylerle doğruluğu gözlenmiştir fakat ispat edilememektedir. Bütün bu ifadeler matematiksel olarak çok daha kolay ifade edilebilir.

Aşağıdaki formüllerde

  • Q = çevrim boyunca net ısı alışverişini
  • W = çevrim boyunca net iş alışverişini

göstersin. Ama bir de çevrime ihtiyaç duyuyoruz şimdi onu da basit olarak çizelim,

Resim:Örnek_hal_değişimi.JPG

Şimdi bu şekilde sistemin herhangi iki hali görünüyor yani 1 ve 2 nolu noktalar. Hal değişimleri ise A , B , C çizgileriyle sağlansın. Ok yönleri de hal değişimlerinin olacağı yönler. Şimdi hal değişimleri 1A2 ve 1B2 ise 2C1 ilk hale dönülen durumdur. Şimdi çevrimleri kurguluyalım elimizde 1A2C1 ve 1B2C1 çevrimleri var:

  • 1A2.δ.Q + 2C1.δ.Q = 1A2.δ.W + 2C1.δ.W ( 1A2C1 Çevrimi ) (a denklemi)
  • 1B2.δ.Q + 2C1.δ.Q = 1B2.δ.W + 2C1.δ.W ( 1B2C1 Çevrimi ) (b denklemi)

1A2C1 ve 1B2C1 çevrimleri birbirlerine eşittir. Termodinamiğin 1. kanunu uygulandığında a ve b denklemleri ortaya çıkar b denklemi a denkleminden çıkarırsak c denklemini buluruz.

  • 1A2 ( δ.Q - δ.W ) = 1B2( δ.Q - δ.W ) (c denklemi)

1A2 ve 1B2 aynı haller arasında herhangi iki hal değişimi olduğundan δQ – δW ifadesinin 1-2 noktası arasındaki bütün hal değişimleri için bağımsız olduğu söylenebilir. Bunların farkı nokta fonksiyonudur ve tam diferansiyeldir. Bu sisteme has bir özellik olup sistemin enerjisidir ve E ile gösterilir (E=δQ-δW) sonsuz küçük hal değişimi için bu formülün integrali alınırsa;

  • Q1-2 : Sistemin hal değişimindeki ısı alışverişi
  • W1-2 : Sistemin hal değişimindeki iş alışverişi
  • E1 : Sistemin ilk haldeki enerjisi ve
  • E2 : Sistemin son haldeki enerjisi

olmak üzere;

Q1-2 – W1-2 = E2 – E1

formülü çıkar. Termodinamikte enerji, maddenin yapısına bağlı iç enerji ve koordinat eksenlerine bağlı olan kinetik enerji (EK) ve potansiyel enerji (EP) olarak ayrılabilir;

E = U + EK + EP

Sistemin herhangi bir hal değişimindeki enerjisi de;

Q1-2 – W1-2 = E2 – E1 = (U2 – U1) + (1/2) m (V22 – V12) + m g (z2 – z1)
  • U: iç enerji
  • m: kütle
  • V: hız
  • g: yerçekimi ivmesi
  • z: yükseklik


İkinci Yasa

Birçok alanda uygulanabilen ikinci yasa şöyle tanımlanabilir:

Bir ısı kaynağından ısı çekip buna eşit miktarda iş yapan ve başka hiçbir sonucu olmayan bir döngü elde etmek imkansızdır. (Kelvin-Planck Bildirisi)
ya da
Soğuk bir cisimden sıcak bir cisme ısı akışı dışında bir etkisi olmayan bir işlem elde etmek imkansızdır. (Clausius Bildirisi)

Termal olarak izole edilmiş büyük bir sistemin entropisi hiçbir zaman azalmaz (bkz: Maxwell'in Cini). Ancak mikroskopik bir sistem, yasanın dediğinin tersine entropi dalgalanmaları yaşayabilir (bkz: Dalgalanma Teoremi). Aslında, dalgalanma teoreminin zamana göre tersinebilir dinamik ve nedensellik ilkesinden çıkan matematiksel kanıtı ikinci yasanın bir kanıtını oluşturur. Mantıksal bakımdan ikinci yasa bu şekilde aslında fiziğin bir yasasından ziyade göreli olarak büyük sistemler ve uzun zamanlar için geçerli bir teoremi haline gelir. Ludwig Boltzmann tarafından tanımlanmıştır. Sisteme dışardan enerji verilmediği sürece düzenin düzensizliğe düzensizliğin de kaosa dönüşeceğini anlatır. Kırık bir bardağın durup dururken veya kırarken harcanan enerjiden daha azı kullanılarak eski haline döndürülemeyeceği örneği verilir klasik olarak. Yine aynı şekilde devrilen bir kitabı düzeltmek için devirirken harcanan enerjiden fazlasını kullanmak gerekir, potansiyel enerjinin bir kısmı ısıya dönüşmüştür ve geri getirilemez. Aynı zamanda evrendeki düzensizlik eğilimini de anlatır. Düzensizlik eğilimini anlatırken entropi kelimesini kullanır. Yunanca, en = ingilizcedeki 'in' gibidir, önüne geldiği kelimeye -de, -da eki verir ve tropos = yol kelimesinin çoğulu olan 'tropoi' (tropi diye telaffuz edilir) kelimesinden. Yani; "yolda").

  • Düzensizlik ya değişmez ya da artar. Örnek olarak difüzyon verilebilir. Ayrı duran maddeler bir arada olandan daha düzenlidir ve kendiliğinden karışmış sıcak ve soğuk sudan olmuşmuş ılık suyun, bir daha sıcak ve soğuk diye ayrılması imkansızdır.
  • Eskime, yaşlanma, yıllanma gibi eylemlerin nedenidir.
  • En düzensiz enerji ısıdır ve bir gün gelecek bütün enerji ısı olacaktır ve bu da evrenin sonu demektir.
  • İleri sürülecek teoriler termodinamiğin 2. kanunuyla çelişmemelidir.
  • Entropi iş yapma yeteneği olmayan enerji olarak da tanımlanır. İki cam balona farklı sıcaklıklarda gaz, cam balonlar arasına da bir pervane konacak olursa ilk başta pervanenin döndüğünü görülecektir. Fakat sonra entropi arttığı için pervanenin dönmesi duracaktır.
  • Spor yapmak için bir parkta 100 metrelik bir koşu yapıldığını, 100 metrenin sonunda yorulup koşamayacak hale gelindiğini ve bir yere oturulduğu düşünülecek olursa koşarken harcanmış olan ve bir daha kazanılamayacak olan enerjiye entropi denir.
  • Sistemin düzensizliği arttıkça artan herhangi bir fonksiyon rahatça entropi fonsiyonu olabilir. Örneğin bir bardak suyumuz olduğunu ve bunun içine bir damla mürekkep damlatıp gözlediğimizi düşünelim ve içeride neler olduğunu hayal etmeye çalışalım. Mürekkep molekülleri başlangıçta kısa bir süre bir arada bekleştikten sonra su içine dağılmaya başlayacaklardır. Çünkü kendilerine çarpan su molekülleri tarafından değişik yönlere itileceklerdir (su ve mürekkep maddelerinin kimyasal bağlarının birbirlerini itmeye elverişli olmalarından dolayı). Şimdi de olağanüstü bir bilgisayarın, sistemin bütün mümkün durumlarını sayabildiğini düşünelim. Sistemin bir durumu denildiğinde anlamamız gereken şey bir molekülün belirli bir koordinata ve belirli bir hıza; bir başka molekülun bir başka belirli koordinata ve hıza sahip olduğu konfigürasyondur. Bardaktaki mürekkep örneğinde bu tür durumların sayısının çok fazla olduğu açıktır. Zira bunların çok büyük bir kısmı mürekkebin moleküllerinin bardak içinde oraya buraya rasgele dağıldığı, düzensiz, yani yüksek entropili durumlara karşılık gelirler. Bizim algıladığımız düzeyde bunların hepsi homojen durumlardır. Çünkü karışıma baktığımızda o molekülün burada, bir başkasının şurada olmasına aldırmadan, mürekkebin homojen olarak dağıldığını söyleyebiliriz. Yani olağanüstü sayıda farklı mikroskopik durum tek bir makroskobik duruma, yani homojen duruma karşılık gelir.
  • Aslında sistemler bozulmamakta, enerji değişimi bazında en kararlı hali almaya çalışmaktadırlar. Hayatın anlamı da budur, yaşam entropi yollarından biridir, şekerin çaya çok daha çabuk karışmasını sağlayan kaşık işlevindedir.
  • Kapalı bir sistemde entropi her zaman artar. Kapalı sistem kısmı çok önemlidir. Sisteme enerji vermek suretiyle entropisi azaltılabilir. Dünya kapalı bir sistem değildir. Güneşten sürekli olarak enerji akmaktadır dünyaya, ve düzeni bu sağlar.
  • "Parçacık sayısı sonsuza giderken olması en muhtemel olan şey olur": Havaya bir miktar bozuk para atılsa hepsinin tura gelme ihtimali yalnızca birdir: tttttt.... Biri dışında hepsinin tura gelme ihtimali daha çoktur: ytttt..., tyttt, ttyttt... Yarısının yazı, yarısının tura gelme ihtimali daha da çoktur: ytytyt..., yytyttyt..., yttytyyt.... İşte bu sonuncusu maksimum entropiye sahip olan sistemdir. Sonuç olarak entropinin artması, sistemin muhtemel olmayan durumdan daha çok muhtemel olan duruma doğru gitmesi demektir. İçinde bulunulan odadaki moleküllerin hepsinin odanın sağ köşesindeki bir noktaya toplanması mümkünse de bu koşulu sağlayan yalnızca bir konfigürasyon vardır. Oysa atomların odanın her yerine eşit dağıldığı daha çok konfigürasyon vardır.


Üçüncü Yasa

Bu yasa neden bir maddeyi mutlak sıfıra kadar soğutmanın imkansız olduğunu belirtir:

Sıcaklık mutlak sıfıra yaklaştıkça bütün hareketler sıfıra yaklaşır.

Sıcaklık mutlak sıfıra yaklaştıkça, bir sistemin entropisi bir sabite yaklaşır. Bu sayının sıfır değil de bir sabit olmasının sebebi, bütün hareketler durmasına ve buna bağlı olan belirsizliklerin yok olmasına rağmen kristal olmayan maddelerin moleküler dizilimlerinin farklı olmasından kaynaklanan bir belirsizliğin hala mevcut olmasıdır. Ayrıca üçüncü yasa sayesinde maddelerin mutlak sıfırdaki entropileri referans alınmak üzere kimyasal tepkimelerin incelenmesinde çok yararlı olan mutlak entropi tanımlanabilir.

Bu yasalardan birini ihlal eden makinalara o yasanın numarası türünden (örneğin, yoktan enerji yaratıyorsa birinci türden) devridaim makinası (ilginç bir şekilde Türkçe'de "Con Ahmet Makinası") denir.

Bu yasaların çeşitli komik çeşitlemeleri de vardır:

Ginsberg'in teoremi: (1) kazanamazsınız, (2) berabere kalamazsınız, ve (3) oyundan çıkamazsınız.

Ya da: (1) çalışmadan bir şey elde edemezsiniz, (2) çalışarak en fazla elde edebileceğiniz şey ancak karsız zararsız olmaktır, ve (3) bunu da ancak mutlak sıfırda elde edebilirsiniz.

Ya da, (1) oyunu ne kazanabilirsiniz ne de oyundan çıkabilirsiniz, (2) çok soğuk olmadığı sürece oyunu berabere bitiremezsiniz, (3) hava o kadar soğumaz.

[değiştir] Alıntılar

"Bu evde biz termodinamik kurallarına uyarız!" (Lisa enerjisi zamanla artan bir devridaim makinası yaptıktan sonra ) – Homer Simpson

"Termodinamik komik bir konudur. İlk defa öğrendiğinizde, ne olduğunu anlamazsınız bile. İkinci defa üzerinden geçtiğinizde, bir-iki nokta hariç anladığınızı düşünürsünüz. Üçüncü defa baktığınızda ise, anlamadığınızı bilirsiniz, ama o zamana kadar konuya alıştığınız için bu sizi o kadar rahatsız etmez." – Arnold Sommerfeld

"Sütü döktüğünüze üzülmeyin, doğanın bütün güçleri size karşıydı."

[değiştir] Dış Bağlantılar

[değiştir] Kaynakça

Bu yazıda oldukça yararlanılan Wikipedia İngilizce termodinamik başlığı

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu