Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Termodinámica - Wikipedia, la enciclopedia libre

Termodinámica

De Wikipedia, la enciclopedia libre

La termodinámica es la rama de la física que estudia la energía, la transformación entre sus distintas manifestaciones, como el calor, y su capacidad para producir un trabajo.

Está íntimamente relacionada con la mecánica estadística, de la cual se pueden derivar numerosas relaciones termodinámicas. La termodinámica estudia los sistemas físicos a nivel macroscópico, mientras que la mecánica estadística suele hacer una descripción microscópica de los mismos.

Trabajo (física)
Aumentar
Trabajo (física)

Tabla de contenidos

[editar] Leyes de la Termodinámica

[editar] Ley cero de la termodinámica

A este principio se le llama "equilibrio térmico". Si dos sistemas A y B están a la misma temperatura, y B está a la misma temperatura que un tercer sistema C, entonces A y C están a la misma temperatura. Este concepto fundamental, aun siendo ampliamente aceptado, no fue formulado hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición 0.

[editar] Primera ley de la termodinámica

Artículo principal: Conservación de la energía

También conocido como principio de la conservación de la energía, la Primera ley de la termodinámica establece que si se realiza trabajo sobre un sistema, la energía interna del sistema variará. La diferencia entre la energía interna del sistema y la cantidad de energía es denominada calor. Fue propuesto por Antoine Lavoisier.

En otras palabras: La energía no se crea ni se destruye solo se transforma. (conservación de la energía).

[editar] Segunda ley de la termodinámica

Esta ley indica las limitaciones existentes en las transformaciones energéticas. En un sistema aislado, es decir, que no intercambia materia ni energía con su entorno, la entropía (desorden en un sistema) siempre habrá aumentado (nunca disminuido, como mucho se mantiene) desde que ésta se mide por primera vez hasta otra segunda vez en un momento distinto. En otras palabras: El flujo espontáneo de calor siempre es unidireccional, desde una temperatura más alta a una más baja. Existen numerosos enunciados, destacándose también el de Carnot y el de Clausius.

[editar] Enunciado de Carnot

Nicolas Léonard Sadi Carnot en 1824 propuso : La potencia motriz del calor es independiente de los agentes que intervienen para realizarla; su cantidad se fija únicamente por la temperatura de los cuerpos entre los que se hace, en definitiva, el transporte calórico.

[editar] Enunciado de Clausius

Diagrama del ciclo de Carnot en función de la presión y el volumen.
Aumentar
Diagrama del ciclo de Carnot en función de la presión y el volumen.

En palabras de Sears es : " No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".

Ambos enunciados son equivalentes y expresan una misma ley de la naturaleza. "La energía no se crea ni se destruye solo se transforma".

\eta_{carnot} = 1-\frac{T_{c}}{T_{h}} = \eta_{max} \,

Donde:

\eta_{carnot}\,, rendimiento del ciclo de Carnot.
T_{c}, T_{h}\,, temperaturas de la fuente fría (c) y caliente (h).
\eta_{max} \,, rendimiento máximo.

[editar] Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo siempre será menor a la unidad y ésta estará más próxima a la unidad cuanto mayor sea el rendimiento energético de la misma. Es decir, mientras mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

[editar] Tercera ley de la termodinámica

La Tercera ley de la termodinámica, propuesto por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.

Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica. A la vez hay que recordar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por la ciencia.

[editar] Rendimiento termodinámico

Un concepto importante en la ingeniería térmica es el de rendimiento. El rendimiento de una máquina térmica que funciona entre un foco frío Qc y uno caliente Qh se define como:

\begin{matrix}\eta = \frac{|W|}{Q_h}\end{matrix} \!\,

donde W es el trabajo proporcionado por la máquina.

Carnot demostró que el rendimiento máximo de una máquina es proporcional a la diferencia de temperatura de sus focos:

\begin{matrix}\eta_{max} = 1 - \frac{T_c}{T_h} \end{matrix} \!\,

donde TcyTh son las temperaturas del foco frío y foco caliente medidas en Kelvin.

Este rendimiento máximo es el correspondiente al de una máquina térmica reversible la cual es sólo una idealización, por lo que cualquier máquina térmica construida tendrá un rendimiento menor que el de la máquina reversible operando entre los mismos focos. Lo cual constituye el teorema de Carnot.

\eta_{m.t.reversible} > \eta_{m.t.irreversible} \,

[editar] Diagramas termodinámicos

[editar] Véase también

Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com