Privacy Policy Cookie Policy Terms and Conditions תורת המיתרים - ויקיפדיה

תורת המיתרים

מתוך ויקיפדיה, האנציקלופדיה החופשית

תורת המיתרים או תאוריית המיתרים (String theory) היא תאוריה פיזיקלית הגורסת כי הצורה הגאומטרית של כל חלקיק אינה נקודה (בעלת 0 ממדים), אלא צורה חד ממדית הקרויה מיתר (כמו כן קיימות ממברנות בעלת מספר רב יותר של ממדים - דו-ממדית, תלת-ממדית וכן הלאה). מיתר יכול להיות סגור (בצורת לולאה) או פתוח (כלומר בעל קצוות חופשיים, בצורת קו), ויכול להתנודד באופני תנודה שונים (כפי שמיתר של גיטרה יכול להשמיע תווים שונים). ההבדל בין חלקיקים שונים הוא בהיותם מיתרים פתוחים או סגורים, ובאופן התנודה של המיתר.

בשל גודלם הזעיר של המיתרים (כאורך פלנק), ובגלל המספר הגדול של הפתרונות השונים של משוואות התאוריה, וכן בגלל קשיים מתמטיים, אין ביכולתנו עדיין לבחון תאוריה זו בניסויי מעבדה, ולכן יש פיזיקאים המתייחסים אליה כאל תאוריה פילוסופית או מתמטית בלבד.

תורת היחסות הכללית, שעוסקת בקני מידה גדולים (כוכבים, גלקסיות ומבנה היקום) אינה מתיישבת עם תורת השדות הקוונטית, שעוסקת בקני מידה קטנים (עד החלקיקים הקטנים ביותר הידועים). תורת המיתרים מאחדת בין שתיהן. איחוד כזה (תורת כבידה קוונטית) נדרש בין השאר כדי להבין חורים שחורים ואת ראשית היקום ומבנהו הכולל.

תפקיד נוסף של תורת המיתרים הוא בתיאור תורות כיול הדומות לכרומודינמיקה קוונטית (QCD), שהיא התורה המתארת את התנהגותם של הקוורקים (המרכיבים הקטנים ביותר של גרעין האטום).

לאורך השנים תורת המיתרים התפתחה רבות ושולבה בה סימטריית-העל (סופרסימטריה), ולכן כיום היא נקראת: תורת העל-מיתרים.

תוכן עניינים

[עריכה] רקע

תורת השדות הקוונטית מבוססת על שילוב של מכניקת הקוונטים ותורת היחסות הפרטית, והיא הבסיס התיאורטי לכמעט כל התופעות הידועות. היא עוסקת בפיזיקה של קנה מידה קטן ביותר, עד מיליארדית של מיליארדית המטר (אלפית מגודלו של גרעין האטום). היא מתארת את התנהגותם של כל החלקיקים האלמנטריים הידועים (כמו אלקטרונים, פוטונים ואבני הבניין של הגרעין) ומתארת את הכוח האלקטרומגנטי, הכוח הגרעיני החזק והכוח הגרעיני החלש.

תורת היחסות הכללית עוסקת בכבידה (גרביטציה), ומספקת בסיס תיאורטי להבנתם של חורים שחורים ושל התנהגות היקום בכללותו (קוסמולוגיה). עם זאת, תורת היחסות הכללית אינה עולה בקנה אחד עם תורת השדות הקוונטית. תורה שתאחד את שתיהן תיקרא תורת כבידה קוונטית. תורה כזו נדרשת כדי להבין מה קורה בתוך חור שחור, מה קרה בראשית היקום (ליתר דיוק במיליארדית השנייה הראשונה של היקום), ומה יקרה באנרגיות גבוהות מאוד (כאלה שעדיין לא ניתן להגיע אליהן במאיצי חלקיקים).

ב-1984 התברר שתורת המיתרים היא תורה כזו. לפני כן, פותחה תורת המיתרים בניסיון לתאר את הפיזיקה בתוך הגרעין ומרכיביו (הפרוטון והניוטרון). כיוון זה ננטש לאחר פיתוחה של הכרומודינמיקה הקוונטית (QCD), אך בשנים האחרונות התברר שתורת המיתרים עשוייה להתאים גם לכך.

[עריכה] עקרונות תורת המיתרים

בבסיס התאוריה, התיאור של חלקיקים לא כעצמים נקודתיים אלא כבעלי אורך סופי (חד-ממדיים) - כעין חוט. חוט זה יכול להיות בעל קצוות חופשיים, ואז הוא קרוי "מיתר פתוח", או שקצותיו מחוברים (כלומר אין לו קצה), ואז הוא קרוי "מיתר סגור". מיתר יכול להתפצל לשתיים, ושני מיתרים יכולים להתאחד (עבור מיתרים פתוחים, זה יכול לקרות אם קצותיהם נפגשים). זה מתאר מצב בו חלקיק אחד פולט או בולע חלקיק אחר, וכך ניתן פתח להסביר את האינטרקציות בין חלקיקים (ראה תורת השדות הקוונטית).

אם נסתכל על חלקיק נקודתי במרחב, ונוסיף גם את ציר הזמן בדמיוננו, החלקיק - בחלוף הזמן - ינוע לאורך קו כאשר הוא מתקדם בזמן (אם החלקיק נייח במרחב, הוא ינוע לאורך ציר הזמן; אם הוא נע במרחב, הוא ינוע הן לאורך ציר הזמן והן במרחב). הקו המתאר את תנועת החלקיק נקרא "קו עולם" (worldline). בתורת המיתרים, אנו מחליפים את החלקיק במיתר (בעל אורך), ואז במקום קו-עולם נקבל משטח דו-ממדי, הקרוי "יריעת עולם" (worldsheet).

[עריכה] תורת המיתר הבוזוני

יריעת העולם היא משטח דו-ממדי שממוקם בתוך העולם שלנו (המנוח המתמטי הנכון הוא: משוכן בעולם שלנו). מכאן, שאפשר לצייר את המשטח הדו-ממדי על דף, אם לכל נקודה בדף נקבע היכן היא ממוקמת בעולם האמיתי: לכל נקודה בדף קובעים היכן היא ממוקמת על ציר X, ציר Y, ציר Z וציר הזמן T. הדרך לתאר זאת באופן מתמטי היא שקיימות ארבע פונקציות מהדף לעולם האמיתי: הפונקציות X, Y, Z ו-T. פונקציות אלה מתוארות על ידי שדות פיזיקליים. כלומר, אנו חושבים על מיקומו של המיתר במרחב ובזמן כנקבע על ידי שדות פיזיקליים ש"חיים" עליו.

התנועה של המיתר במרחב ובזמן נקבעת על ידי החוקים הפיזיקליים ששולטים בהתנהגות השדות הללו. חוקים אלה מבוססים על ההנחות הבאות:

  • סימטריה לשינוי קואורדינטות (דיפאומורפיזם) - אנו קובעים קואורדינטות, כלומר מערכת צירים, על המשטח הדו-ממדי (נהוג לקרוא לצירים σ ו-τ, אבל זה בדיוק כמו ציר x וציר y). את הצירים קבענו באופן שרירותי, כלומר אין משמעות פיזיקלית אמיתית לצירים הללו. לכן, התאוריה וכל המשוואות חייבים להישאר ללא שינוי גם אם נשנה את מערכת הקואורדינטות (כלומר גם אם נקבע מערכת צירים אחרת).
  • השדות הם שדות קוונטיים. כיוון ששדות אלה מתארים את מיקום המיתר במרחב ובזמן נובע מכך, שהמיתר נע במרחב ובזמן בדומה לחלקיק בתורת הקוונטים (כלומר, כאשר הוא עובר בין שתי נקודות הוא עובר בסופרפוזיציה דרך כל המסלולים האפשריים ביניהן). דרישה זו הכרחית כיוון שהמיתר אכן אמור לתאר חלקיק כזה.

התורה הפשוטה ביותר שמקיימת עקרונות אלה היא תורת המיתר הבוזוני, ובה יריעת העולם (המשטח הדו ממדי) מתנהגת בעולם שלנו, הקרוי ה"מרחב-זמן", כיריעה גמישה (כלומר כמו גומי מתוח וגמיש, או כמו עור של תוף).

מעקרונות אלה נובעות התוצאות הבאות:

[עריכה] אינטרקציות בין חלקיקים

כאשר אנו משכנים את יריעת העולם (המשטח הדו ממדי) במרחב-זמן (כלומר בעולם שלנו), יכולות להיות לו צורות שונות. כך, מיתר סגור יכול להיראות כצינור (כלומר לולאה שמתחנו על פני ציר הזמן), אבל הוא יכול להיראות אחרת - למשל, כצינור שמתפצל לשני צינורות, או כטורוס (צורת בייגלה) שממנו יוצאים שני צינורות, וכן הלאה. מיתר פתוח יכול להיראות כסרט (כלומר קו קצר שמתחנו על פני ציר הזמן), אבל גם כסרט שמפצל לשני סרטים, וכיו"ב.

צינור שמתפצל לשני צינורות מייצג למעשה מיתר סגור (לולאה) שמתקדם בזמן, ובשלב מסוים מתפצל לשני מיתרים סגורים. הדבר מתאר, לפיכך, חלקיק שמתפצל לשניים, או - חלקיק שפולט חלקיק אחר. באותו אופן, סרט שמתפצל לשני סרטים מייצג מיתר פתוח (קו) שמתפצל לשני מיתרים פתוחים, או - שוב - חלקיק שפולט חלקיק אחר. כך, אלקטרון הפולט פוטון מיוצג על ידי מיתר (האלקטרון) שמתפצל לשני מיתרים (האלקטרון והפוטון).

הכיוון ההפוך (שני צינורות שמתאחדים לצינור יחיד) מתאר חלקיק שבולע חלקיק אחר. כך, אלקטרון הבולע פוטון מיוצג על ידי שני מיתרים (האלקטרון והפוטון) שמתאחדים למיתר יחיד (האלקטרון).

לפיכך אינטרקציות בין חלקיקים, שהם עקרון בסיסי בתורת השדות הקוונטית שמניחה אותן כאקסיומה ללא הסבר, נובעות מתורת המיתרים באופן טבעי ולמעשה מוסברות על ידה.

[עריכה] ספקטרום וספין

בהינתן החוקים השולטים בשדות שעל המיתר, ניתן לחשב כיצד שדות אלה יכולים להשתנות. השדות מייצגים את מיקומן של הנקודות השונות של המיתר במרחב-זמן, ולכן השינויים בשדות מייצגים הן את תנועתו של המיתר במרחב, והן תנודות במיתר - בדומה למיתר של גיטרה, שיכול להתנודד.

למעשה, התנודות על המיתר קובעות כיצד הוא ינוע במרחב ובזמן, וגם אילו אינטרקציות יהיו לו. שני גורמים אלה קובעים מה יהיו תכונותיו הפיזיקליות של המיתר למתבונן מבחוץ (למשל לפיזיקאי שמבצע ניסוי), ולכן הם למעשה קובעים איזה מין חלקיק יהיה המיתר - האם הוא יהיה פוטון, אלקטרון או חלקיק מסוג אחר.

כך ניתן לקבוע מהו הספקטרום של התאוריה, כלומר אילו חלקיקים יש בה.

בנוסף, התנודות הנעות במיתר יכולות לשאת תנע זוויתי, כלומר לנוע באופן מעגלי (למשל, במיתר הסגור - שצורתו צורת לולאה - ייתכנו תנודות סביב הלולאה). הדבר יבוא לידי ביטוי בספין של החלקיק המתאים, ובכך ניתן הסבר לקיומו של ספין בחלקיקים.

בתורת המיתר הבוזוני מתקבלים מספר סוגי חלקיקים חסרי מסה, ביניהם: בוזוני כיול - שיכולים לכלול בתוכם את הפוטון ואת יתר החלקיקים, הנושאים את כל הכוחות מלבד הכבידה. גרביטון - החלקיק הנושא את הכבידה.

בנוסף, התורה מנבאת את קיומם של חלקיקים רבים בעלי מסה גדולה מאד, שבפועל לא ניתן לראות כיום (כיוון שנדרשים מאיצי חלקיקים ענקיים כדי ליצור אותם). כמו כן, אחד החלקיקים בתורה הוא טכיון (ראה להלן).

כיוון שהתורה כוללת גרביטונים, היא תורת כבידתית, וכוללת בתוכה גם את תורת היחסות הכללית (ליתר דיוק באנרגיות נמוכות - כלומר בתנאים שאנו נתקלים בהם בפועל - תתקיים תורת היחסות הכללית המוכרת לנו, ובאנרגיות גבוהות יותר היא כבר לא תהיה מדוייקת). כך, אפשר לחשוב על שדה כבידה כעל אוסף של המוני גרביטונים.

[עריכה] תכונות המרחב-זמן

בתורת היחסות הכללית, המרחב-זמן יכול להיות עקום, וניתן לחזות כיצד המבנה של המרחב (והיקום כולו) יתפתח עם הזמן. כיוון שתורת המיתרים כוללת בתוכה את תורת היחסות הכללית, הרי שגם היא אמורה לחזות זאת.

אם מתעלמים מכך ומניחים שהמרחב-זמן הוא שטוח ("רגיל"), אז ניתן להראות, שלא ייתכן שיש רק ארבעה שדות כאמור (X, Y, Z ו-T), כלומר שלושה ממדי מרחב וממד זמן. למעשה נדרשים 26 שדות, כלומר 26 ממדים (25 ממדי מרחב וממד זמן). הסיבה לכך היא, שאם אין בדיוק 26 שדות כאלה, אז התורה היא אנומלית.

תורת מיתר כזו, שבה מניחים שלמרחב-זמן צורה מסוימת, ותעלמים מהעובדה שהמיתרים עצמם יכולים לשנות את צורתו של המרחב-זמן, קרוייה תורת מיתר הפרעתית, כיוון שהמיתרים הם "הפרעות" - שינויים קטנים - במרחב-זמן, ולא גורמים בו לשינויים גדולים. אך למעשה, אוסף גדול של מיתרים יגרום ליצירה של שדה כבידה, שמשנה את צורת המרחב והזמן. לאפקטים הקשורים בכך קוראים אפקטים לא הפרעתיים.

[עריכה] אפקטים לא הפרעתיים

אפקטים לא הפרעתיים חשובים בתורת המיתר כוללים:

  • קיומם של עצמים נוספים מלבד המיתרים, שיכולים להיות חד-ממדיים, דו-ממדיים, תלת-ממדיים וכן הלאה. אפשר לחשוב על עצמים אלה כעל ממברנות. הקשר בינם לבין מיתרים, הוא שמיתרים יכולים להיפלט מעצמים אלה או להיבלע בהם (זאת כיוון שבאופן פורמלי, ממברנה כזו מוגדרת כך שיריעות העולם של המיתרים יכולים להתחבר אליה). עצמים אלה קרויים ממברנות דיריכלה (D-branes).
  • דואליות מסוגים שונים - התורה הבוזונית בתנאים מסוימים אקוויוולנטית לתורה הבוזונית בתנאים אחרים לגמרי.
  • התעבות טכיונים, שתוסבר להלן.

[עריכה] הטכיון

כאמור, כל אופן תנודה על המיתר הוא חלקיק מסוג מסוים. התנודות הפשוטות ביותר של המיתר הפתוח הן פוטונים, והתנודות הפשוטות ביותר של המיתר הסגור הן גרביטונים או חלקיקים אחרים הקשורים לכבידה. אבל אופן התנודה הבסיסי ביותר הוא - שאין כלל תנודה. במקרה כזה, המיתר - בהיותו גמיש - "קורס" לנקודה, כלומר שכל הקו שממנו המיתר "עשוי" נמצא באותה נקודה במרחב (במקרה כזה נאמר שיריעת העולם - שמייצגת את התקדמות המיתר לאורך ציר הזמן - אינה ממלאת משטח במרחב-זמן, אלא רק קו).

ההתנהגות של חלקיק כזה במרחב זמן היא של טכיון, והמשמעות בפועל היא שחלקיקים כאלה יווצרו ללא גבול, וישנו את המרחב-זמן באופן שישנה לחלוטין את התאוריה - תהליך הקרוי התעבות טכיונים. לפיכך תורת המיתר הבוזונית אינה קונסיסטנטית (כלומר, יש בה סתירה פנימית).

אפשר להבין מדוע חלקיקים כאלה יכולים להיווצר ללא גבול, אם נחשוב על כך שלמיתר יש מתיחות, כלומר הוא שואף להיות באורך מינימלי: כאשר מיתר מתפצל לשתיים, האורך הכולל גדל (במקום מיתר אחד באורך מסוים, יש עכשיו שני מיתרים - שאורכם הכולל יחד כפול). אבל אם המיתר הוא במצב של טכיון, אין לו אורך כלל (הוא מרוכז כולו בנקודה), ולכן אם יתפצל לשתיים האורך הכולל לא יגדל. ניתוח זה אינו מדוייק כיוון שהוא מתעלם מאנרגיית קזימיר של המיתר, אבל הוא טוב מספיק לענייננו.

[עריכה] תורת העל-מיתר

בתורת המיתר הבוזונית מספר בעיות, שהחשובות שבהן הן:

  • קיומו של טכיון, שהופך את התורה לבלתי קונסיסטנטית (כלומר, יש בה סתירה פנימית).
  • החלקיקים היחדים הקיימים בה הם בוזונים, בעוד שבטבע קיימים גם פרמיונים.
  • תורת המיתר הבוזוני מתארת את הפיזיקה בקני מידה קטנים מאוד, מסדר גודל של אורך המיתר, שעשוי להיות קטן כמו אורך פלנק. לא ניתן לדעת כיצד הניבויים שלה יבואו לידי ביטוי בקני המידה שאותם ניתן למדוד (למשל, ייתכן שבקני מידה תת-אטומיים, שהם גדולים בהרבה מקני המידה של תורת המיתר הבוזוני, יהיו חלקיקים שונים לגמרי מאלה שהיא חוזה).

שלוש הבעיות הללו נפתרות על ידי תורת העל-מיתר. בתורה זו, קיימים ביריעת העולם שדות נוספים מלבד אלה המתארים את מיקומו של המיתר. אפשר לחשוב על שדות אלה כמייצגים "חיצים" במרחב-זמן, כלומר מצבו כל מיתר מוגדר לא רק לפי מיקומו ותנועתו במרחב-זמן, אלא גם לפי חיצים שאפשר לצייר עליו, כאשר בכל נקודה חץ שיכול להצביע למקום אחר.

השדות המתארים את החיצים הם פרמיוניים - זאת כיוון שבכל נקודה יש רק "חץ" אחד (בדומה לחלקיקים פרמיונים - לא יכולים להיות שני חלקיקים מאותו סוג ואותו מצב באותה נקודה).

קיימת סימטריה בין השדות המתארים חיצים אלה, לבין השדות המתארים את מיקומו של המיתר. כיוון שהראשונים הם פרמיוניים והאחרונים הם בוזוניים, הסימטריה המקשרת ביניהם היא סימטריית-על (סופרסימטריה), ומכאן השם תורת העל-מיתר. יריעת העולם במקרה כזה נקראת סופרסימטרית.

למעשה קיימות מספר גרסאות של תורות על-מיתר, אבל להלן נעסוק בחמש החשובות שבהן, שלהן תכונות משותפות רבות.

ספקטרום תורת העל-מיתר: העובדה שקיימים שדות נוספים על המיתר מאפשרת את קיומם של חלקיקים נוספים ביחס לתורה הבוזונית, חלקיקים שהם פרמיונים (בדומה לשדות החדשים). לפיכך, התורה יכולה לכלול את כל החלקיקים המוכרים. בין חלקיקים אלה לבוזונים מתקיימת סימטריה, שגם היא סימטריית-על (סופרסימטריה). כלומר: לא רק יריעת העולם היא סופרסימטרית, אלא גם המרחב-זמן הוא סופרסימטרי. כמו כן, לא קיים טכיון (זאת כיוון שהשדות הנוספים אינם מאפשרים למיתר "לקרוס" לנקודה), ולפיכך אין בתורה סתירה פנימית.

תכונות המרחב-זמן: במרחב שטוח חייבים להיות עשרה ממדים, ולא 26 כמו בתורה הבוזונית. כמו כן, המרחב-זמן הוא, כאמור, סופרסימטרי. מתכונותיה של הסופרסימטריה נובע, שהפיזיקה בקני המידה של אורך המיתר תהיה דומה לפיזיקה בקני מידה גדולים הרבה יותר, כלומר הניבויים של תורת העל-מיתר יהיו רלוונטיים גם לקני מידה שקרובים לאלה שאנו מסוגלים למדוד כיום.

אפקטים לא הפרעתיים: כמו בתורה הבוזונית, גם בתורה זו קיימות ממברנות דיריכלה, ודואליות מסוגים שונים.

ישנן 5 ווריאציות עיקריות של תורת העל-מיתר:

  • טיפוס I - כוללת הן מיתרים פתוחים והן סגורים. במרחב-זמן קיימת סימטריית-על אחת.
  • טיפוס IIA - בתורה זו המיתרים הפתוחים חייבים להיות צמודים לממברנות דיריכלה שהן חד-ממדיות, תלת-ממדיות, או בעלות חמישה, שבעה או תשעה ממדים (כולל מימד הזמן). כמו כן יש בה מיתרים סגורים. במרחב-זמן קיימות שתי סימטריות-על, כלומר יש מספר כפול של פרמיונים ביחס לטיפוס I.
  • טיפוס IIB - בתורה זו המיתרים הפתוחים חייבים להיות צמודים לממברנות דיריכלה שהן דו-ממדיות, ארבע-ממדיות, או בעלות שישה או שמונה ממדים (כולל מימד הזמן). כמו כן יש בה מיתרים סגורים. גם כאן במרחב-זמן קיימות שתי סימטריות-על.
  • הטרוטית O - כוללת מיתרים סגורים בלבד. במרחב-זמן קיימת סימטריית-על אחת.
  • הטרוטית E - כוללת מיתרים סגורים בלבד. במרחב-זמן קיימת סימטריית-על אחת.

ידוע מה כל אחת מהתורות הללו מנבאות רק במקרה שקבוע הצימוד בין המיתרים קטן, כלומר רק אם הסיכוי שמיתרים יתפצלו ויתאחדו הוא קטן. ואולם, כשם שהמיתרים עצמם יכולים לשנות את מבנה המרחב-זמן (כאשר הם במצב של גרביטונים), כך הם יכולים לגרום לשינויים בקבוע הצימוד (כאשר הם במצב של חלקיק הקרוי דילאטון). כלומר, המיתרים עצמם יכולים להשפיע על הסיכוי שהם יתפצלו או יתאחדו. לפיכך, אי אפשר להניח מראש שהסיכוי לכך הוא קטן.

[עריכה] דואליות ותורת האם (M-theory)

בין חמש תורות העל-מיתר שצויינו קיימת דואליות, כלומר תורה אחת בתנאים מסוימים שקולה לתורה אחרת בתנאים אחרים. קיימות עדויות לכך שכולן הן למעשה מקרים פרטיים של תורה בת 11 ממדים, הקרוייה תורת האם (M-theory), שבה העצמים אינם מיתרים אלא ממברנות.

[עריכה] איך זה מסתדר עם העולם הארבע ממדי שלנו?

למרות שתורת העל-מיתר מנבאת את קיומם של עשרה ממדים (במרחב שטוח), אנו יודעים שהעולם שלנו הוא ארבעה ממדי (תלת ממדי ועוד מימד הזמן). מה קרה לששה הממדים האחרים? לכך מספר תשובות אפשריות:

  • ששת הממדים האחרים הם קומפקטיים, כלומר הם קטנים מאד. בעוד שבממדים המוכרים לנו אפשר לנוע ללא גבול (לפחות ככל שאנו מסוגלים למדוד), הרי שבממדים אלה התנועה מוגבלת למרחק קטן מאד, קטן בהרבה מכדי שישפיע על כל דבר שניתן למדוד. הדבר דומה לצינור ארוך ודק, שאנו מגלגלים לאורכו כדור. מבחינת הכדור, הצינור הוא חד-ממדי - הכדור יכול לנוע לאורכו בכיוון אחד או בכיוון ההפוך. העובדה שלצינור יש רוחב אינה רלוונטית, כי אם הכדור מספיק גדול, הוא אינו יכול לנוע כמעט לרוחב הצינור. לכן, כשנגלגל כדור בצינור, הוא ינוע כאילו הצינור הוא חד ממדי. אבל, אם נשים זבוב בצינור, הזבוב קטן מספיק כדי שהוא יוכל לנוע בכל הכיוונים - הן לאורכו של הצינור והן לרוחבו. לכן, מבחינת הזבוב חלל הצינור הוא תלת ממדי. בדוגמה שלנו, הכדור מייצג אטום, והזבוב מייצג מיתר: המיתר קטן מספיק כדי שששת הממדים הקטנים יהיו רלוונטיים עבורו, אך האטום - וגם אנחנו - גדולים הרבה יותר, ולא נרגיש בקיומם של ממדים אלה. קיימים מודלים, שמסבירים מדוע כאשר נוצר היקום דווקא ששה ממדים הפכו קטנים ושלושת ממדי המרחב האחרים הפכו גדולים מאוד (זהו מכניזם בראנדנברג-וואפה).
  • היקום שלנו מצוי למעשה על ממברנת דיריכלה ארבע-ממדית (כולל מימד הזמן), בתוך עולם עשרה ממדי. מה שמחוץ לממברנה כמעט שאינו משפיע עלינו, וההשפעה היחידה שלו היא השפעה כבידתית. לפי הסבר זה, החומר האפל עשוי להיות משהו שמחוץ לממברנה של היקום, ולכן הדרך היחידה שבה אנו חשים בקיומו היא באמצעות השפעותיו הכבידתיות.
  • ששת השדות, שאמורים לייצג שישה ממדים נוספים, למעשה מייצגים משהו אחר לגמרי - לא ברור מה.

כיום מקובל בדרך כלל שצורתם של ששת הממדים הנוספים חשובה מאד, כיוון שהיא משפיעה על הפיזיקה שלנו בכך שהיא קובעת את תכונותיהם של החלקיקים.

[עריכה] הצלחות, הנוף ואתגרים לעתיד

בין ההצלחות של תורת המיתרים:

הבעייה המרכזית של תורת המיתרים היא שבמצבה הנוכחי היא אינה נותנת ניבויים שניתן לבדוק אותם כיום. בין הסיבות לכך:

  • קשה מאוד לגלות את הממדים הנוספים. בהנחה שמדובר בממדים קומפקטיים, הם קטנים מאוד ונדרשות אנרגיות גבוהות מאוד כדי לגלותם. זאת, כיוון שלפי מכניקת הקוונטים, רק חלקיקים בעלי תנע - ולכן גם אנרגיה - גבוהים, "מרוכזים" במקום מספיק קטן, כלומר המיקום שלהם מוגדר מספיק במדוייק כדי שהממדים הקטנים ישפיעו עליהם.
  • תורת העל-מיתר (במרבית הווריאציות שלה) מנבאת את קיומה של סימטריית-על במרחב-זמן, וזו אינה נצפית בטבע. מכאן, שסימטרייה זו נשברת ספונטנית. לא ידוע מהו המנגנון המדוייק של שבירה זו. אם מניחים שלא קיימת סימטריית-על, לא ניתן לדעת כיצד הניבויים של תורת המיתרים בקני המידה של המיתר יבואו לידי ביטוי בקני המידה שאותם ניתן למדוד.
  • אפשר לנסות לפתור את התאוריה אם מניחים שקבוע הצימוד קטן, כלומר שהסיכוי שמיתרים יתפצלו ויתאחדו הוא קטן. כך ניתן לגלות מה התכונות המדוייקות של החלקיקים שאמורים להתקיים. ואולם, כאשר עושים זאת, מגלים שיש מספר עצום של פתרונות. מספר עצום זה של פתרונות נקרא נוף (landscape) בגלל הצורה הגראפית בה ניתן להציגו. בין הפתרונות אפשר לקבל גם את המודל הסטנדרטי, כלומר את הפיזיקה הידועה כיום, אך אין שום הסבר מדוע זהו הפתרון הנכון.
  • לא ידוע כיצד לפתור את התאוריה "עד הסוף", כלומר עבור קבוע צימוד גדול (סיכוי גדול שמיתרים יתפצלו ויתאחדו), ותוך התחשבות בכך שהמיתרים עצמם יכולים לשנות את קבוע הצימוד. בפרט, לא ידוע מהי תורת האם.

מאיץ החלקיקים הנבנה בימים אלה, LHC, עשוי לתת עדויות לקיומם של ממדים קומפקטיים, ולקיומה של סימטריית-על.

[עריכה] ראו גם

[עריכה] קישורים חיצוניים

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu