Malplena aro
El Vikipedio
En matematiko kaj pli aparte en aroteorio, malplena aro estas la unika aro kiu ne enhavas erojn. En aksioma aroteorio estas postulatita ĝia ekzisto per la aksiomo de malplena aro kaj ĉiuj finiaj aroj estas konstruita de ĝi. La malplena aro estas ankaŭ nomata kiel nula aro, sed ĉar nula aro signifas ion alian en mezura teorio, uzo de ĉi tiu termino por malplena aro estas ĝenerale evitinda.
Diversaj eblaj propraĵoj de aroj estas bagatele veraj por la malplena aro.
[redaktu] Skribmaniero
La norma skribmaniero por malplena aro estas la simbolo aŭ ∅. La signo devus esti ne konfuzita kun la skandinava vokalo Ø&_oslash_; kaj la Greko litero Φ.
Por kompari, vidu la tri signojn kune: ∅ Øø Φ – la malplena ara signo estas bazita sur geometria cirklo, sed la skandinava litero similas al ovalo kilel litero 'O'.
La signo de malplena aro "∅" havas unikodan kodan U+2205. Komuna TeX-a pakaĵo uzas por ĝi skribojn \_emptyset_ kaj \_varnothing_, kiuj respektive aperas kiel:
Alia komuna skribmaniero por la malplena aro estas {}.
[redaktu] Propraĵoj
- Por ĉiu aro A, la malplena aro estas subaro de A:
- ∀A: ⊆ A
- Por ĉiu aro A, la unio de A kun la malplena aro estas A:
- ∀A: A ∪ = A
- Por ĉiu aro A, la komunaĵo de A kun la malplena aro estas la malplena aro:
- ∀A: A ∩ =
- Por ĉiu aro A, la kartezia produto de A kaj la malplena aro estas malplena:
- ∀A: A × =
- La sola subaro de la malplena aro estas la malplena aro:
- ∀A: A ⊆ ⇒ A =
- La nombro de eroj de la malplena aro (tio estas ĝia kardinalo) estas nulo; kaj malplena aro estas finia:
- || = 0
- Por ĉiu propraĵo:
- por ĉiu ero de la propraĵo estas vera
- forestas ero de por kiu la propraĵo estas vera
- Male: se, por iu propraĵo, jenaj du propozicioj estas veraj samtempe:
- por ĉiu ero de V la propraĵo veras
- forestas ero de V por kiu la propraĵo veras
- tiam V =
[redaktu] Rolo de malplena aro en matematiko
Estas dirita, ke kun la malplena aro ekas la matematiko, ĉar oni povus uzi ĝin por ekkrei la entjerojn ; ek de la entjeroj oni kreas la aliajn nombrojn, ktp.
Laŭ VON NEUMANN, tiel oni procedas :
- kiun kvanton da elementoj kunmetas la malplena aro {}? Nul (0).
- kiun kvanton da elementoj kunmetas la aro {0} ? Unu (1).
- kiun kvanton da elementoj kunmetas la aro {0,1} ? Du. ktp.
Jene oni povus difini ĉijn entjerojn, uzante nur unu aĵon.
<!-- --> | Ĉi tiu artikolo enhavas dume forkomentitajn partojn de la teksto ĉar ili ankoraŭ ne estas sufiĉe bonaj. Vi povas redakti la paĝon kaj plibonigi kaj malkomenti la forkomentitajn partojn. |