Случайный процесс
Материал из Википедии — свободной энциклопедии
Случа́йный проце́сс (случайная функция) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или пространства.
Содержание |
[править] Определение
Пусть дано вероятностное пространство . Параметризованное семейство случайных величин
- ,
где T произвольное множество, называется случайной функцией.
[править] Терминология
- Если , то параметр может интерпретироваться как время. Тогда случайная функция {Xt} называется случайным процессом. Если множество T дискретно, например , то такой случайный процесс называется случа́йной после́довательностью.
- Если , где , то параметр может интерпретироваться как точка в пространстве, и тогда случайную функцию называют случа́йным по́лем.
Данная классификация нестрогая. В частности термин случайный процесс часто используется как безусловный синоним термина случайная функция.
[править] Замечание
Пусть дан случайный процесс . Тогда для каждого фиксированного Xt — случайная величина. Если фиксирован элементарный исход , то — детерминистическая функция параметра t. Такая функция называется траекто́рией или реализа́цией случайной функции {Xt}.
[править] Примеры
- , где Xi˜N(0,1) называется гауссовской (нормальной) случайной последовательностью.
- Пусть , и Y — случайная величина. Тогда
является случайным процессом.