数学記号の表
出典: フリー百科事典『ウィキペディア(Wikipedia)』
数学記号の表(すうがくきごう-ひょう)
数学においては、抽象的な概念を簡潔に記述するために様々な特殊な記号が用いられる。これは、それらの記号と意味を記した一覧表である。
注)環境によっては記号が正しく表示されない場合があります。
目次 |
[編集] 記号論理の記号
以下の解説において、文字 P, Q, R はそれぞれ何らかの命題を表すものとする。
記号 | 読み | 意味 | 解説 |
---|---|---|---|
∧ | かつ | 論理積 | 「P ∧ Q」は「命題 P と命題 Q がともに真」という命題を表す。 |
∨ | または | 論理和 | 「P ∨ Q」は「命題 P と命題 Q の少なくとも一方は真」という命題を表す。 |
¬ | ……でない | 否定 | 「¬P」は「命題 P が偽」という命題を表す。 |
⇒ | ならば | 導出 | 「P ⇒ Q」は、「命題 P が真なら必ず Q も真」という命題を表す。P が偽の場合については何も言っていないことに注意。 |
→ | |||
⇔ | ……のとき且つそのときに限って, 同値, if and only if | 同値 | 「P ⇔ Q」は P と Q の真偽が必ず一致することを意味する。 |
iff | |||
∀ | 任意の……に対して | 全称限量記号 | しばしば ∀ x ∈ S; P(x) のように書かれ、集合 S の任意の元 x に対して命題 P(x) が成立することを表す。 |
∃ | 存在する | 存在限量記号 | しばしば ∃ x ∈ S; P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が少なくとも1つ存在することを表す。 |
∃1 | 一意的に存在する | 一意的に存在 | しばしば ∃1 x ∈ S; P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が唯1つ存在することを表す。 |
∃! | |||
∴ | 従って, ゆえに, よって | 結論 | 文頭に記され、その文の主張が前述の内容を受けて述べられていることを示す。 |
∵ | なぜならば | 理由・根拠 | 文頭に記され、その文の内容が前述の内容の理由説明であることを示す。 |
:= | ……とおく | 定義 | 「A := X」は、A という記号の意味するところを、X と定義することである。「A :⇔ X」とも書く。 |
:⇔ |
[編集] 集合論の記号
以下の解説において、S, T は何らかの集合を表す。
記号 | 読み | 意味 | 解説 |
---|---|---|---|
∈ | ……に属する, in | 集合に属すること | 「x ∈ S」は、x が集合 S の元であることを意味する。必要に応じて「S ∋ x」とも書くが、こちらには S が主語であるようなニュアンスを伴うこともある。 「¬(x ∈ S)」を「x ∉ S」と書く。 |
∉ | 属さない | ∈ の否定 | |
= | 等しい, イコール | 集合の一致 | 「S = T」は集合 S と集合 T が等しいことを示す。 |
≠ | 等しくない, ノットイコール | 集合の不一致 | = の否定 |
⊆ | ……は○○に含まれる。 | 集合の包含関係 | 「S ⊆ T」は S が T の部分集合であることを意味する。必要に応じて「T ⊇ S」とも書く。他も同じ。 ⊆は S と T が等しい場合を含むが、⊂ は真部分集合の場合のみを表す。 ただし、⊂ に「等しい場合」を含む流儀もあり、その場合、真部分集合であることを示すには を用いる。 |
⊇ | |||
⊂ | |||
⊃ | |||
記号 | 読み | 意味 | 解説 |
---|---|---|---|
∩ | かつ, キャップ | 積集合 | 「S ∩ T」は集合 S と集合 T の積集合を表す。また
は、集合族 {Sλ} の全ての積集合を表す。 |
∪ | または, カップ | 和集合 | 「S ∪ T」は集合 S と集合 T の和集合を表す。また、
|
+ | 足す | 直和集合 | 「S + T」は「S ∪ T」に同じであるが、ただし S ∩ T が空集合であることを暗黙に述べている。
この場合、集合族の和集合は次のように記す。 |
∑ | シグマ | ||
\ | 引く | 差集合 | 「S \ T」は、集合 S から集合 T を除いた差集合を表す。「S - T」も同じ。 |
- | |||
·c | 補集合 | 補集合 | Sc は、集合 S の補集合を表す。「」も同じ。 |
C( · ) | |||
2 · | 冪 | べき集合 | 2Sは、S の部分集合を全て集めた集合を表す。 とも書く。 |
( · ) | |||
× | 掛ける, 直積 | 直積集合 | 「S × T」は S と T の直積を表す。一般に、集合族 {Sλ} に属する集合たちの直積を
|
∏ | パイ | ||
· / · | オーヴァー | 商集合 | 「S/∼」は、集合 S の同値関係 ∼ によって定まる S の商集合を表す。 |
Map( · , · ) | マップ | 写像の全体 | Map(S,T) は S から T への写像を全て集めた集合を表す。 |
Δ | (不明) | 対称差 | 対称差は、二つの集合に対し、一方には含まれるが他方には含まれない元を全て集めた集合を表す。
|
記号 | 読み | 意味 | 解説 |
---|---|---|---|
f: · → · | ……から……への写像 | 写像 | 「f:S→T」は、 f が S から T への写像であることを示す。 |
……を……に写す | 元の対応 | は、x を写像 f によって写したものが y であることを意味する。文脈上明らかであれば f の記述は省略される。 | |
まる、コンポジット | 合成写像 | 「」は写像 f と写像 g の合成を表す。すなわち
である。合成の順序を逆に定義する(つまり、g(f(x)) と定義する)流儀もある。 |
|
Image | イメージ | 像 | 写像 φ に対して、Image φ はその写像の像全体の集合(値域)を表す。 |
記号 | 読み | 意味 | 解説 |
---|---|---|---|
{x ∈ S | P(x)} | - | - | S の元のうち、命題 P(x) が真であるもの全てを集めた集合。必要がなければ「∈ S」は省略する。 |
φ | 空集合, ファイ | 空集合 | 空集合を表す。本来の空集合記号はであるが、組み版の都合上、見た目が似ている φ で代用する習慣もある。 |
P | ピー | 素数の全体 | - |
N | エヌ | 自然数の全体 | - |
Z | ゼット, ズィー | 整数の全体 | - |
Q | キュー | 有理数の全体 | - |
R | アール | 実数の全体 | - |
A | エー | 代数的数の全体 | - |
C | シー | 複素数の全体 | - |
H | エイチ | 四元数の全体 | - |
記号 | 読み | 意味 | 解説 |
---|---|---|---|
| · | | ……の濃度 | 濃度 | |S| は集合 S の濃度を表す。card S や #S も同じ。 |
card | |||
# | |||
アレフ・ゼロ | 可算濃度 | - | |
アレフ | 連続体濃度 | - |
[編集] 定数
ある数学定数を表すために広く習慣的に使われる記号がいくつかある。
記号 | 読み | 意味 | 解説 |
---|---|---|---|
0 | ゼロ, 零 | 0, 加法の単位元 | 普通の意味での数の 0 を表す。 また、集合 S にある可換な演算(加法)とその単位元が存在するとき、単位元を 0 あるいは 0S と書く。 |
1 | いち | 1, 乗法の単位元 | 普通の意味での数の 1 を表す。また、集合 S にある演算(乗法)とその単位元が存在するとき、単位元を 1 あるいは 1S と書く。 |
π | パイ | 円周率 | - |
e | イー | 自然対数の底 | - |
i | アイ | 虚数単位 | - |
j, k | ジェイ, ケイ | 四元数体の基底 | 1, i とともに四元数体の、R上のベクトル空間としての基底をなす。 |
[編集] 基本的な演算記号
これらは主に実数、複素数などの普通の意味で「数」と見なされるものに対して適用される演算記号である。ベクトル、行列、その他の代数系においても適宜適用されるものもある。
記号 | 読み | 意味 | 解説 |
---|---|---|---|
+ | プラス | 正符号 | x の加法に関する逆元を表すために負符号を用いて -x と記す。これとのバランスのため、x 自身のことを +x と書くこともある。 |
- | マイナス | 負符号 | |
+ | 足す | 加法 | 「x + y」は x と y の和を表す |
∑ | シグマ | 加法,無限和 |
と定義され、その極限として定まる無限和を と書く。またある命題 P(x) があるとき、P(x) を満たすような各 k についての和を取ることを |
- | 引く | 減法 | 「x - y」は x と y の差を表す。通常、「x + (-y)」と定義されている。 |
* | 掛ける | 乗法 | 「x * y」は x と y の積を表す。「x · y」や「x × y 」とも書く。 |
· | |||
× | |||
∏ | パイ | 乗法,無限積 | ∑ はたくさんの加法を一挙に表すものであったが、∏ はたくさんの乗法を一挙に表すものである。
|
÷ | 割る | 除法 | 「x ÷ y」は x を y で割った商を表す。 |
/ | |||
mod | モッド | 剰余 | 「x mod y」は x を y で割った余りを表す。「x % y」はコンピュータ寄りの分野で良く用いられる記法である。 |
% | |||
! | 階乗 | 階乗 | n! は n の階乗を表す。 |
$ | 超階乗 | 超階乗 | n$ は n! を n! 回累乗した数を表す。2$ = 2!2! |
| · | | 絶対値 | 絶対値 | |x| は x の絶対値である。 |
|| · || | ノルム | ノルム | ||x|| は x のノルムである。 |
<·, ·> | 内積 | 内積 | <x, y> は x と y の内積である。 |
フロアー | 床関数 | 実数 x に対し、は x を超えない最大の整数を表す。 | |
シーリング | 天井関数 | 実数 x に対し、は x を下回らない最小の整数を表す。 | |
√ | ルート | 平方根, べき根 | n√x は x の n 乗根を表す。n が 2 であるときには単に √x と書くことが多い。 |
リ, リアルパート | 実部 | 複素数 z に対し、 または Re(z) はその実部を表す。 | |
イム, イマジナリーパート | 虚部 | 複素数 z に対し、またはIm(z) はその虚部を表す。 | |
バー | 共役複素数 | 複素数 z に対し、 はその共役複素数を表す。 |
記号 | 読み | 意味 | 解説 |
---|---|---|---|
= | 等しい, イコール | 同等 | x = y は x と y が等しいことを表す。 |
≠ | 等しくない, ノットイコール | 不一致 | x ≠ y は x と y が等しくないことを表す。 |
< | 小なり | 大小関係, 順序 | 「x < y」は x と y の間に何らかの順序が定まっていて、x の方が「先」であることを示す。必要に応じて「y > x」とも書く。 |
> | 大なり | ||
≤ | 小なりイコール | 大小関係, 順序 | 「x ≤ y」とは「x < y または x = y」のことである。「x ≥ y」も同様に定義される。 |
≥ | 大なりイコール | ||
≪ | 非常に小 | 大小関係 | 「x ≪ y」は x が y に比べて非常に小さいことを表す。「どれくらい」小さいかは文脈による。 |
≫ | 非常に大 | ||
≒ | ニアリーイコール,circa | ほぼ等しい | 「x ≒ y」または「x ≈ y」は x と y がほぼ等しいことを表す。記号≒は日本のみ通用し、国際的には≈を使う。近似においてどのくらい違いを容認するかは文脈による。 |
≈ | |||
| | 割り切る | 割り切る | 「x | y」は、x が y を割り切ることを表す。 |
割り切らない, 割り切れない | | の否定 | - | |
≡ | 合同 | 合同 | 記号 ≡ は、三角形の合同関係や整数の合同関係などを表すために広く使われる。 整数の合同関係を表すときには法となる数を併記する。「n ≡ m (mod d)」は n と m が d を法として合同であることを示す。 |
[編集] 解析学の記号
記号 | 読み | 意味 | 解説 | ||||||
---|---|---|---|---|---|---|---|---|---|
lim | リミット | 極限値 | 数列 an に対し、 はその数列の極限値を表す。 また、関数 f(x) に対し、 は f(x) の c における極限値を表す。 |
||||||
' | プライム, ダッシュ | 導関数, 微分 | 関数 f(x) に対し、f '(x) は f の導関数を表す。また、次のようにも表記される。
|
||||||
ディー ディー・エックス | |||||||||
sup | サプ, スープ | 上限 | 集合 S に対し、sup S は S の上限を表す。また、写像 f に対し、f(S) の上限を次のようにも書く。
その他、いくつかの記法のバリエーションがある。 |
||||||
inf | インフ | 下限 | 上限と同様。 | ||||||
max | マックス | 最大値 | 記法は上限と同様 | ||||||
min | ミン | 最小値 | 記法は上限と同様 | ||||||
∫ | インテグラル | 積分 |
|
||||||
o(·) | スモール・オー | ランダウの記号 | 関数の増え方の大まかな様子を表す | ||||||
O(·) | ラージ・オー | ||||||||
Θ(·) | シータ | ||||||||
Ω(·) | オメガ | ||||||||
· ~ · | - |
[編集] 代数学の記号
記号 | 読み | 意味 | 解説 |
---|---|---|---|
dim | ディム, ディメンション | 次元 | ベクトル空間 V に対し、「dim V」は V の次元を表す。 |
rank | ランク | 階数 | 線形写像 φ に対して、rank φ は φ の階数、すなわち dim Image(φ) を表す。 また、行列 A に対して、rank A は A の階数を表す。 |
Ker | カーネル | 核, 零空間 | 群や環の準同型、ベクトル空間の間の線形写像 φ に対して、Ker φ はその準同型の核を表す。 |
deg | ディグリー, デグ | 次数 | 多項式 f に対して、deg f はその次数を表す。 |
ord | オーダー | 位数 | ある群の元の個数を群の位数という。また群の元 x に対し、ord x は x の生成する巡回群の位数を表す。 |
……の生成する部分群, 山括弧 | 生成する部分群, 生成する巡回群 | G を群とすると、G の部分集合 S に対し、<S> は S の生成する部分群を表す。特に、 S が一元集合 S = { x } である時には <x> とも書く。これは x の生成する巡回群である。 | |
Aut(·) | オート | 自己同型群 | Aut(G) は、G のそれ自身に対する同型 (automorphism) 全体からなる群を表す。 |
Inn(·) | インナー | 内部自己同型群 | Inn(G) は、G の内部自己同型 (inner automorphism) 全体からなる群を表す。 |
End(·) | エンド | 自己準同型 | End(G) は、G のそれ自身に対する準同型 (endomorphism) 全体からなる集合(モノイド)を表す。 |