Privacy Policy Cookie Policy Terms and Conditions Racionális szám - Wikipédia

Racionális szám

A Wikipédiából, a szabad lexikonból.

A matematikában racionális számnak (vagy törtszámnak) nevezzük két tetszőleges egész szám hányadosát, amelyet többnyire az a/b alakban írunk fel, ahol b nem nulla.

Egy racionális számot végtelen sok alakban felírhatunk, például 3 / 6 = 2 / 4 = 1 / 2. A legegyszerűbb, azaz tovább nem egyszerűsíthető alak akkor áll elő, amikor a-nak és b-nek nincs közös osztója. Minden racionális számnak pontosan egy olyan tovább nem egyszerűsíthető alakja van, ahol a nevező pozitív.

A racionális számok tizedestört alakja véges vagy végtelen szakaszos (tehát a felírásban egy ponton túl a számsorozat periodikusan ismétlődik). Ez az állítás nem csak a tízes-, hanem tetszőleges, egynél nagyobb, egész alapú számrendszerben való felírásra igaz. A tétel fordítottja is igaz: ha egy szám felírható véges vagy végtelen szakaszos tizedestört alakban, akkor az racionális szám.

Azokat a valós számokat, amelyek nem racionálisak, irracionális számoknak nevezzük.

A racionális számok halmazát a ℚ (vagy \mathbb{Q}) jellel jelöljük. Halmazdefinícióként felírva:

\mathbb{Q} = \left\{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{Z}, n \ne 0 \right\}

Tartalomjegyzék

[szerkesztés] Aritmetika

\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}

 

\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}

 

Két racionális szám, \frac{a}{b} és \frac{c}{d} egyenlők akkor és csak akkor, ha ad = bc

A racionális számoknak létezik additív és multiplikatív inverze:

- \left( \frac{a}{b} \right) = \frac{-a}{b}

 

\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \mbox{ ha } a \neq 0

[szerkesztés] Történetük

[szerkesztés] Egyiptomi törtek

Minden pozitív racionális szám felírható véges sok egész reciprokának összegeként. Például:

\frac{5}{7} = \frac{1}{2} + \frac{1}{6} + \frac{1}{21}

Sőt, minden pozitív racionális számnak végtelen sok ilyen formájú, különböző felírása lehetséges. Ezt az alakot egyiptomi törtnek is nevezzük, mivel már az ókori Egyiptomban is használták, akik egyébként a diadikus törteket is a maitól eltérő alakban írták le.

[szerkesztés] Formális definíció

A racionális számok precízen egész számok rendezett párjaként definiálhatók: \left(a, b\right) ahol b nem nulla. Az összeadást és szorzást ezeken a párokon a következőképp definiáljuk:

\left(a, b\right) + \left(c, d\right) = \left(ad + bc, bd\right)
\left(a, b\right) \times \left(c, d\right) = \left(ac, bd\right)

Annak érdekében, hogy teljesüljön az elvárt 2 / 4 = 1 / 2 tulajdonság, definiálni kell egy ekvivalencia-relációt is (\sim) a következőképpen:

\left(a, b\right) \sim \left(c, d\right) \Leftrightarrow ad = bc


Ez az ekvivalencia-reláció kompatibilis a fent definiált összeadással és szorzással. Legyen ezután Q az ekvivalenciaosztályok halmaza, másszóval azonosnak tekintjük az (a, b) és a (c, d) párt, ha ekvivalensek. (Ez a konstrukció elvégezhető minden integritási tartomány esetében, lásd hányadostest.)


Az így kapott számok halmazán a teljes rendezés is definiálható:

\left(a, b\right) \le \left(c, d\right) \Leftrightarrow (bd>0 \wedge ad \le bc) \vee (bd<0 \wedge ad \ge bc)


[szerkesztés] Tulajdonságok

A racionális számok halmaza (\mathbb{Q}), az összeadás és a szorzás műveletével kiegészítve testet alkotnak. Ez a test az egész számok (\mathbb{Z}) hányadosteste.

A racionális számok halmaza a legszűkebb 0-karakterisztikájú test. Minden egyéb 0-karakterisztikájú test tartalmazza a racionális számok egy "másolatát".

A racionális számok algebrai lezártja (azaz a racionális együtthatós polinomok gyökeit is tartalmazó legszűkebb test) az algebrai számok halmaza.

A racionális számok halmaza megszámlálható, vagyis sorozatba rendezhető. Mivel a valós számok számossága ennél nagyobb, így mondhatjuk, hogy a valós számok túlnyomó többsége irracionális.

A racionális számok halmazának Lebesgue-mértéke nulla.


A racionális számok sűrűn rendezett halmazt alkotnak: bármely két racionális szám között van egy harmadik, sőt végtelen sok. A rendezett halmazok között pontosan a racionális számok halmaza (meg a vele izomorfak) azok, amelyek megszámlálhatóak, sűrűn rendezettek és nincs legkisebb vagy legnagyobb elemük (Georg Cantor tétele).


[szerkesztés] Valós számok

A racionális számok a valós számok halmazának sűrű részhalmazát alkotják, azaz minden valós számhoz tetszőlegesen közel vannak racionális számok. Ugyancsak igaz, hogy a racionális számok pontosan a véges lánctört formájában írható valós számok.

Mivel rendezett halmazt alkotnak, a racionális számokat elláthatjuk a rendezéstopológiával. Ez azonos a valós számok rendezéstopológiájának altértopológiájával, továbbá egyben metrikus tér is, a következő metrikával: d\left(x, y\right) = |x - y|.

E topologikus tér a műveletekkel topologikus testet alkot. A racionális számok topológiája nem lokálisan kompakt. Ez a tér úgy is jellemezhető, hogy az egyetlen megszámlálható metrikus tér, amiben nincsenek izolált pontok. A tér továbbá teljesen széteső. A racionális számok tere nem teljes, teljes lezártja a valós számok tere.


[szerkesztés] p-adikus számok

A fent említett, a szokásos abszolút értékből definiált metrikán kívül vannak más, nem kevésbé fontos metrikák is, amelyek \mathbb{Q}-t topológikus testté szervezik:

legyen p tetszőleges prímszám, definiáljuk minden nemnulla egész a esetén | a | p = p n-t, ahol n p legnagyobb hatványának kitevője, ami osztja a-t; legyen továbbá | 0 | p = 0. Tetszőleges \frac{a}{b} racionális szám esetén legyen \left|\frac{a}{b}\right|_p = \frac{|a|_p}{|b|_p}.

Ekkor d_p\left(x, y\right) = |x - y|_p metrikus teret definiál \mathbb{Q}-n. Ez a tér, \left(\mathbb{Q}, d_p\right) nem lesz teljes, teljes burka a p-adikus számok \mathbb{Q}_p teste lesz.

[szerkesztés] External links

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu