Privacy Policy Cookie Policy Terms and Conditions Kvantumszám - Wikipédia

Kvantumszám

A Wikipédiából, a szabad lexikonból.

Kvantumszámnak hívjuk bármely megmaradó mennyiség kvantummechanikai operátorának olyan sajátértékét, ami egy adott kvantummechanikai rendszer valamely állapotát jellemzi, azaz ott ennek határozott értéke van. A kvantumszámok rendszere más és más az egyes kvantumrendszerek esetén. Pl. a hidrogénatom esetén a főkvantumszám az energia, a mellékkvantumszám az impulzusmomentum sajátállapotait jellemzi.

Tartalomjegyzék

[szerkesztés] Hány kvantumszám szükséges?

Hány kvantumszám szükséges egy rendszer leírására? Erre nem lehet általános választ adni, minden rendszer esetén egyedileg kell ezt a kérdést a rendszer teljes analízisével megválaszolni. Egy rendszer dinamikáját a H Hamilton-operátor határozza meg. Ennek sajátértéke az energia az egyik kvantumszám. Minden olyan O operátor esetére, ami felcserélhető a Hamilton-operátorral (azaz kielégíti az OH = HO feltételt), szintén van egy-egy kvantumszám. Ez az összes kvantumszám, amivel egy rendszer rendelkezhet. Meg kell tehát találni az összes, egymástól független, a Hamilton-operátorral és egymással is - hogy egyszerre mérhetőek legyenek - felcserélhető operátort. Gyakran több ilyen operátorkészlet is található, ilyenkor a konkrét helyzettől függ, melyik ott a legalkalmasabb a kvantumrendszer leírására.

[szerkesztés] Egyelektronos atom

Fő szócikk: Hidrogénszerű atom

A kvantumszámok leggyakrabban vizsgált rendszere az egyelektronos atom esete. Nemcsak azért, mert hasznos a kémiában, mint a legfontosabb konstrukció a periódusos rendszer, a vegyérték és egy sor más tulajdonság mögött, de azért is, mert megoldható és realisztikus probléma, és így számos tankönyben helyet kap.

A nemrelativisztikus kvantummechanikában a Hamilton-operátor az elektron kinetikus energiájából és az atommag és az elektron közötti Coulomb-erőből származó potenciális energiájából áll. A kinetikus energia elkülöníthető egy az elektron mag körüli J impulzusmomentumától függő részre és a maradékra. Mivel a potenciál gömbszimmetrikus, ezért a Hamilton-operátor felcserélhető J2-tel. J2 maga felcserélhető az impulzusmomentumvektor bármelyik komponensével, a konvenció szerint ezek közül Jz-t választjuk (a komponensek egymással nem felcserélhetők). Kizárólag ezek az egymással kölcsönösen felcserélhető operátorok, ezért három kvantumszám van:

  • A főkvantumszám (n = 1, 2, 3,...) jelöli H' - J2-es része nélküli - sajátértékeit. A szám növekedése az elektron és a mag távolságát is jelzi, ezért azt mondjuk, hogy a különböző főkvantumszámhoz tartozó elektronok különböző elektronhéjon vannak.
  • A mellékkvantumszám (l = 0, 1 ... n−1) (amit azimutális kvantumszám és pályakvantumszám néven is ismerünk) adja meg az állapot impulzusmomentumát az J2 = l(l+1) h/2π összefüggésen keresztül, ahol h a Planck-állandó. A kémiában ez nagyon fontos kvantumszám, mivel ez adja meg az atompálya alakját és erős hatással van a kémiai kötésekre és a kötésszögre. Az l=0,1,2,3,... pályákat rendre s,p,d,f,... pályáknak hívjuk.
  • A mágneses kvantumszám (ml = −l, −l+1 ... 0 ... l−1, l) Jz=mlh/2π sajátértéke.
  • A spinkvantumszámot (ms = −1/2 or +1/2) kísérletileg mutatta ki a spektroszkópia, elméletileg helyesen kezelni a relativisztikus kvantummechanika tudja, ahol a spin és pályamomentum összege a valódi megmaradó mennyiség, a teljes impulzusmomentum.

A következőképpen összegezhetjük az atomi elektron állapotát leíró kvantumszámokat:

név jelölés jelentése megengedett értéke példák az értékére
főkvantumszám n\,\! héj 1 \le n \,\! n=1,2,3...\,\!
mellékkvantumszám \ell\,\! alhéj 0 \le \ell \le n-1\,\! n=3 \,\! esetén:
\ell=0,1,2\,(s, p, d)\,\!
mágneses kvantumszám m_\ell\,\! energiaeltolódás -\ell \le m_\ell \le \ell\,\! \ell=2\,\! esetén:
m_\ell=-2,-1,0,1,2\,\!
spinkvantumszám m_s\,\! spin - \begin{matrix} \frac{1}{2} \end{matrix} , \begin{matrix} \frac{1}{2} \end{matrix} \,\! kizárólag: - \begin{matrix} \frac{1}{2} \end{matrix} , \begin{matrix} \frac{1}{2} \end{matrix} \,\!

Példa: A fluor (F) atom legkülső, vegyértékelektronjának (a 2p atompályán) kvantumszámai: n = 2, l = 1, ml = 1, or 0, or −1, ms = −1/2 or 1/2.

Megjegyezzük, hogy a molekulapályák teljesen más kvantumszámokat igényelnek, mivel a Hamilton-operátoruk és annak szimmetriái egészen mások.

[szerkesztés] Elemi részecskék

Fő szócikk: Standard modell

Az elemi részecskéknek sok, gyakran belsőnek mondott, kvantumszáma van. Az elemi részecskék a standard modell kvantumállapotai, ezért ezek a kvantumszámok hasonló viszonyban vannak a standard modell Hamilton-operátorával, mint az atomi kvantumszámok az atom Hamilton-operátorával. Azaz minden kvantumszám egy-egy szimmetriát és a hozzá kapcsolódó megmaradó mennyiséget jelöl. A kvantumtérelméletben hasznos megkülönböztetni a téridő szimmetriáit a belső szimmetriáktól.

Tipikus téridő szimmetriához kötődő kvantumszámok a spin (a forgási szimmetriához kapcsolódik), paritás, C-paritás és T-paritás (a Poincaré-szimmetriához kapcsolódnak). Tipikus belső szimmetriához kötődő kvantumszámok a leptonszám, barionszám vagy az elektromos töltés.

Hasznos megjegyezni egy zavaró momentumot. A legtöbb megmaradó mennyiség additív, és így elemi részecskék kölcsönhatásaiban a kvantumszámok összege ugynaz kell legyen a reakció előtt és után. Vannak azonban - általában paritásoknak hívott - multiplikatí kvantumszámok is, ezeknek a szorzata marad meg, nem az összege. A multiplikatív kvantumszámok olyan szimmetriához tartoznak, ahol a szimmetriatranszformáció kétszeri almazása "nem csinál semmit", azaz visszaviszi a rendszert az eredeti állapotába. Az ilyen transzformációkat tükrözéseknek hívjuk, és a csoportelméletben a Z2 csoport példái.

[szerkesztés] Lásd még

[szerkesztés] Külső hivatkozások

[szerkesztés] Atomfizika

[szerkesztés] Részecskefizika

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu