Ebooks, Audobooks and Classical Music from Liber Liber
a b c d e f g h i j k l m n o p q r s t u v w x y z





Web - Amazon

We provide Linux to the World


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
อวกาศมิงคอฟสกี - วิกิพีเดีย

อวกาศมิงคอฟสกี

จากวิกิพีเดีย สารานุกรมเสรี

บทความนี้ต้องการ จัดรูปแบบ จัดหน้า แบ่งหัวข้อ จัดลิงก์ภายใน
คุณสามารถช่วยแก้ไขปัญหานี้ได้! โดยการกดที่ปุ่ม แก้ไข ด้านบน จากนั้นจัดหน้าให้เหมาะสม แบ่งหัวข้อ ทำลิงก์ภายในสำหรับคำสำคัญ
ดูรายละเอียดเพิ่มเติมได้ที่ การแก้ไขหน้า การแก้ไขหน้าพื้นฐาน และ นโยบายวิกิพีเดีย


ในฟิสิกส์และคณิตศาสตร์ ปริภูมิ(อวกาศ)มิงคอฟสกี --- Minkowski space (หรือ กาล-อวกาศมิงคอฟสกี --- Minkowski spacetime) is the mathematical setting in which ทฤษฎีสัมพัทธภาพพิเศษของอัลเบิร์ต ไอน์สไตน์ is most conveniently formulated. In this setting the three ordinary dimensions of space are combined with a single dimension of time to form a four-dimensional manifold for representing a spacetime. ปริภูมิมิงคอฟสกี ถูกเรียกตามชื่อของ แฮร์มันน์ มิงคอฟสกี (Hermann Minkowski) นักคณิตศาสตร์ชาวเยอรมัน (See History).

หมายเหตุ: บทความนี้บรรยายในแง่คณิตศาสตร์ของปริภูมิมิงคอฟสกีเท่านั้น สำหรับคำบรรยายเชิงฟิสิกส์ดูได้ที่ สัมพัทธภาพพิเศษ (Special relativity)

สารบัญ

[แก้] โครงสร้าง

Formally, ปริภูมิมิงคอฟสกีเป็นปริภูมิเวกเตอร์ (vector space) ในสี่มิติ เหนือฟีลด์ของจำนวนจริง equipped with a nondegenerate, symmetric bilinear form with signature ( − , + , + , + ). สมาชิกของปริภูมิมิงคอฟสกีถูกเรียกว่า เวกเตอร์สี่มิติ (four-vector) ปริภูมิมิงคอฟสกีบางครั้งเขียนแทนด้วย \mathbb{R}^{1,3} to emphasize the signature, แต่บางคนก็นิยมเขียนแทนด้วย \mathcal{M}^4 หรือเขียนสั้นๆ แค่ \mathcal{M}

[แก้] ผลคูณภายในมิงคอฟสกี

A notion very similar to the inner product, called the Minkowski inner product, can be defined for any two four-vectors of M. Given, V, W \in M, the Minkowski inner product is a map \eta : M \times M \rightarrow \R, sometimes denoted by <·, ·> that satisfies four properties, three of which are:

  1. bilinear: \eta (aU + V, W) \, = a \eta(U, W) + \eta(V, W), ( \forall a \in \R and \forall U, V, W \in M)
  1. symmetric: \eta (V, W) \, = \eta (W, V) (\forall V, W \in M)
  1. nondegenerate: if \eta (V, W) \, = 0 \forall W \in M, then V \, = 0,

Note that this is not an inner product in the usual sense, since it is not positive-definite, i.e. the Minkowski norm of a vector V, defined as V^2 \, = \eta(V, V), need not be positive. The positive-definite condition has been replaced by the weaker condition of nondegeneracy (every positive-definite form is nondegenerate but not vice-versa).

Just as in Euclidean space, two vectors are said to be orthogonal if \eta (V, W) \, = 0. A vector V is called a unit vector if V^2 = \pm 1. A basis for M consisting of mutually orthogonal unit vectors is called an orthonormal basis.

There is a theorem stating that any inner product space satisfying conditions 1-3 above always has an orthonormal basis. Furthermore, the theorem states that the number of positive and negative unit vectors in any such basis is fixed. This pair of numbers is called the signature of the inner product.

Then the fourth condition on η can be stated:

4.  The inner product η has signature (-,+,+,+)

[แก้] Standard basis

A standard basis for Minkowski space is a set of four mutually orthogonal vectors (e0, e1, e2, e3) such that

-\left(e_0\right)^2 = (e_1)^2 = (e_2)^2 = (e_3)^2 = 1

These conditions can be written compactly in the following form:

\langle e_\mu, e_\nu \rangle = \eta_{\mu\nu}

where μ and ν run over the values (0, 1, 2, 3) and the matrix η is given by

\eta = \begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}

Relative to a standard basis, the components of a vector V are written (V0,V1,V2,V3) and we use the Einstein notation to write V = Vμeμ. The component V0 is called the timelike component of V while the other three components are called the spatial components.

In terms of components, the inner product between two vectors V and W is given by

\langle V,W\rangle = \eta_{\mu\nu}V^\mu W^\nu = -V^0W^0 + V^1W^1 + V^2W^2 + V^3W^3

and the norm-squared of a vector V is

V^2 \, = \eta_{\mu\nu}V^\mu V^\nu = -(V^0)^2+(V^1)^2+(V^2)^2+(V^3)^2

[แก้] คำจำกัดความแบบอื่น

หัวข้อข้างบนนิยามปริภูมิมิงคอฟสกีเป็นปริภูมิเวกเตอร์ คำจำกัดความแบบอื่นของปริภูมิมิงคอฟสกีคือเป็น affine space ซึ่งมองว่า ปริภูมิมิงคอฟสกีเป็น ปริภูมิสม่ำเสมอ (homogeneous space) ของ Poincaré group with the Lorentz group as the stabilizer. See Erlangen program.

[แก้] การแปลงโลเร็นตซ์ (Lorentz transformations)

ดู: การแปลงโลเร็นตซ์ (Lorentz transformations), กรุ๊ปโลเร็นตซ์ (Lorentz group), กรุ๊ปปวงกาเร (Poincaré group)

[แก้] Causal structure

Four-vectors are classified according to the sign of their (Minkowski) inner product. For four-vectors, U, V and W, the classification is as follows:

  • V is timelike if and only if: \eta_{ab}V^aV^b \,  = V^aV_a <0
  • U is spacelike if and only if \eta_{ab}U^aU^b \, = U^aU_a > 0
  • W is null (lightlike) if and only if \eta_{ab}W^aW^b \, =W^aW_a = 0


This terminology comes from the use of Minkowski space in the theory of relativity. The set of all null vectors at an event of Minkowski space constitutes the light cone of that event. Note that all these notions are independent of the frame of reference.

A useful result regarding null vectors is that if two null vectors are orthogonal (zero inner product), then they must be proportional.

Once a direction of time is chosen, timelike and null vectors can be further decomposed into various classes. For timelike vectors we have

  1. future directed timelike vectors whose first component is negative, and
  2. past directed timelike vectors whose first component is positive.

Null vectors fall into three class:

  1. the zero vector, whose components in any basis are (0,0,0,0),
  2. future directed null vectors whose first component is negative, and
  3. past directed null vectors whose first component is positive.

Together with spacelike vectors there are 6 classes in all.

An orthonormal basis for Minkowski space necessarily consists of one timelike and three spacelike unit vectors. If one wishes to work with non-orthonormal bases it is possible to have other combinations of vectors. For example, one can easily construct a (non-orthonormal) basis consisting entirely of null vectors, called a null basis.

[แก้] Locally flat spacetime

Strictly speaking, the use of the Minkowski space to describe physical systems over finite distances applies only in the Newtonian limit of systems without significant gravitation. In the case of significant gravitation, spacetime becomes curved and one must abandon special relativity in favor of the full theory of general relativity.

Nevertheless, even in such cases, Minkowski space is still a good description in an infinitesimally small region surrounding any point (barring gravitational singularities). More abstractly, we say that in the presence of gravity spacetime is described by a curved 4-dimensional manifold for which the tangent space to any point is a 4-dimensional Minkowski space. Thus, the structure of Minkowski space is still essential in the description of general relativity.

In the limit of weak gravity, spacetime becomes flat and looks globally, not just locally, like Minkowski space. For this reason Minkowski space is often referred to as flat spacetime.

[แก้] History

Minkowski space is named for the German mathematician Hermann Minkowski, who around 1907 realized that the theory of special relativity previously worked out by Einstein and Lorentz could be elegantly described using a four-dimensional spacetime, which combines the dimension of time with the three dimensions of space.

“The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.” – Hermann Minkowski, 1908

[แก้] Related topics

  • Euclidean space
  • spacetime
  • speed of light
  • world line
  • metric tensor
  • Lorentzian manifold
  • Erlangen program
  • split-complex number
  • hyperbolic quaternions

[แก้] References


  อวกาศมิงคอฟสกี เป็นบทความเกี่ยวกับ ฟิสิกส์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ อวกาศมิงคอฟสกี ในภาษาอื่น สามารถหาอ่านได้จากเมนู ภาษาอื่น ๆ ด้านซ้ายมือ
Our "Network":

Project Gutenberg
https://gutenberg.classicistranieri.com

Encyclopaedia Britannica 1911
https://encyclopaediabritannica.classicistranieri.com

Librivox Audiobooks
https://librivox.classicistranieri.com

Linux Distributions
https://old.classicistranieri.com

Magnatune (MP3 Music)
https://magnatune.classicistranieri.com

Static Wikipedia (June 2008)
https://wikipedia.classicistranieri.com

Static Wikipedia (March 2008)
https://wikipedia2007.classicistranieri.com/mar2008/

Static Wikipedia (2007)
https://wikipedia2007.classicistranieri.com

Static Wikipedia (2006)
https://wikipedia2006.classicistranieri.com

Liber Liber
https://liberliber.classicistranieri.com

ZIM Files for Kiwix
https://zim.classicistranieri.com


Other Websites:

Bach - Goldberg Variations
https://www.goldbergvariations.org

Lazarillo de Tormes
https://www.lazarillodetormes.org

Madame Bovary
https://www.madamebovary.org

Il Fu Mattia Pascal
https://www.mattiapascal.it

The Voice in the Desert
https://www.thevoiceinthedesert.org

Confessione d'un amore fascista
https://www.amorefascista.it

Malinverno
https://www.malinverno.org

Debito formativo
https://www.debitoformativo.it

Adina Spire
https://www.adinaspire.com