Wikipedia for Schools in Portuguese is available here
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Kriging - Wikipédia

Kriging

Origem: Wikipédia, a enciclopédia livre.

Kriging, também muitas vezes traduzido como Krigagem, é um método de regressão usado em geoestatística para aproximar ou interpolar dados. A teoria de Kriging foi desenvolvida a partir dos trabalhos do seu inventor, Daniel G. Krige, pelo matemático francês Georges Matheron, no começo dos anos sessenta. Na comnidade estatística, também é conhecido como “Processo Gaussiano de Regressão”. A estimação com base em apenas um atributo insere-se no âmbito da Kriging; a estimação de um atributo à custa de outros atributos insere-se no âmbito da Cokriging.

Índice

[editar] Introdução

Kriging pode ser entendido como uma predição linear ou uma forma da Inferência bayesiana. Parte do princípio que pontos próximos no espaço tendem a ter valores mais parecidos do que pontos mais afastados. A técnica de Kriging assume que os dados recolhidos de uma determinada população se encontram correlacionados no espaço. Isto é, se num aterro de resíduos tóxicos e perigosos a concentração de Zinco num ponto p é x, é muito provável que se encontrem resultados muito próximos de x quanto mais próximos se estiver do ponto p (princípio da geoestatística). Porém, a partir de determinada distância de p, certamente não se encontrarão valores aproximados de x porque a correlação espacial pode deixar de existir.

Considera-se o método de Kriging do tipo BLUE (Best Linear Unbiased Estimator - Melhor Estimador Linear não-Viciado): é linear porque as suas estimativas são combinações lineares ponderadas dos dados existentes; é não enviezada pois procura que a média dos erros (desvios entre o valor real e o valor estimado) seja nula; é a melhor porque os erros de estimação apresentam uma variância (variância de estimação) mínima. O termo Kriging abrange um conjunto de métodos, sendo os mais usuais os seguintes:

[editar] Tipos de Kriging

[editar] Kriging Simples

Assume que as médias locais são relativamente constantes e de valor muito semelhante à média da população que é conhecida. A média da população é utilizada para cada estimação local, em conjunto com os pontos vizinhos estabelecidos como necessários para a estimação.

[editar] Kriging Ordinário

As médias locais não são necessáriamente próximas da média da população usando-se apenas os pontos vizinhos para a estimação. É o método mais usado em problemas ambientais.

[editar] Cokriging

É uma extensão do anterior a situações em que duas ou mais variáveis são espacialmente dependentes e a variável que se quer estimar não está amostrada com a intensidade com que estão as outras variáveis dependentes, utilizando-se os valores destas e as suas dependências para estimar a variável requerida.

[editar] Conceitos matemáticos

O Método de Kriging utiliza-se de diversas teorias explanadas na estatística. No entanto, para deixarmos mais claras as teorias de estatística usadas e mais direcionadas ao escopo deste texto, explicaremos alguns conceitos.

[editar] Semi-variância e semi-variograma

Variograma
Ampliar
Variograma

A semi-variância é a medida do grau de dependência espacial entre duas amostras. A magnitude da semi-variância entre dois pontos depende da distância entre eles, implicando em semi-variâncias menores para distâncias menores e semi-variâncias maiores para distâncias maiores. O gráfico das semi-variâncias em função da distância a um ponto é chamado de Semi-variograma. A partir de uma certa distância a semi-variância não mais aumentará com a distância e se estabilizará num valor igual à variância média, dando a esta região o nome de silo (sill). A distância entre o início do semi-variograma e o começo do silo recebe o nome de range. Ao extrapolarmos a curva do semi-variograma para a distância zero, podemos chegar a um valor não-nulo de semi-variância. Este valor recebe o nome de Efeito nugget (Nugget Effect).

[editar] Modelos de Variograma

No Método de Kriging normalmente são usados quatro tipos de variogramas. Neles, são usadas as seguintes variáveis:

v\,: variância
c_0\,: nugget
a\,: silo
c_0+c\,: variância assintótica
h\,: distância de separação

[editar] Linear

Este modelo não apresenta silo e é muito simples. Sua curva pode ser representada por:

v= c_0+ch\,

[editar] Esférico

A forma esférica é a mais utilizada e possui silo. Sua forma é definida por:

v=\begin{cases} c_0+c[1.5(\frac{h}{a})-0.5(\frac{h}{a})^3], & \mbox{se }h<a \\ c_0+c, & \mbox{se } h>a\end{cases}

[editar] Exponencial

A curva do variograma exponencial respeita a seguinte equação:

v=c_0+c (1-e^\frac{-h}{b})\,

[editar] Gaussiano

A forma gaussiana é dada por:

v=\begin{cases} c_0+c(1-e^\frac{-h^2}{a^2}), & \mbox{se }h<a \\ c_0+c, & \mbox{se } h>a\end{cases}

[editar] O Método de Kriging

[editar] Determinação do Semivariograma

Toma-se como base a simulação de um sistema de duas dimensões (2D) que contém um número finito de pontos onde é possível a medição de uma grandeza qualquer. Após a adquisição destes dados, iniciar-se-á a interpolação por Kriging buscando alcançar uma maior resolução. O primeiro passo é construir um semivariograma experimental. Para tal, calcula-se a semivariância de cada ponto em relação aos demais e insere-se no gráfico da semivariância pela distância.

v(h=d_{ip})=\frac{1}{2n}\sum_{i=1}^{n}(f_i-f_p)^2

A partir deste gráfico estima-se o modelo de variograma que melhor se aproxima da curva obtida. O efeito pepita pode estar presente no semivariograma experimental e deve ser considerado. Determinado o modelo do semivariograma a ser usado, inicia-se a fase de cálculos. Sendo o semivariograma uma função que depende da direção, é natural que apresente valores diferentes conforme a direção, recebendo este fenômeno o nome de Anisotropia. Caso o semivariograma apresente uma forma semelhante em todas as direções do espaço, só dependendo de h, diz-se que a estrutura é Isotrópica, i. e., sem direções privilegiadas de variabilidade.

[editar] Cálculo dos Pesos

Considere, para o cálculo do Kriging, a seguinte fórmula:

F(x,y)=\sum_{i=1}^{n}w_if_i

onde n é o número de amostras obtidas, fi é o valor obtido no ponto i e wi é o peso designado ao ponto i. A fim de obter os pesos de cada um dos n pontos, para cada um deles é realizado um cálculo de w1,w2,...,wn. Tal procedimento depende do tipo de Kriging que está sendo utilizado. Salienta-se a seguinte notação:

w_j\,: peso do j-ésimo ponto
S(d_{ij})\,: valor da semi-variância de dij
\lambda\,: variável temporária

[editar] Kriging Ordinário

Neste caso é utilizado a média local dos pontos amostrados. Por conseguinte, deve-se normalizar a média dos pesos. Consequentemente, tem-se um resultado mais preciso do que o Kriging Simples. Utilizar-se-ão as seguintes equações para a determinação dos valores dos pesos no p-ésimo ponto:

\begin{cases} w_1S(d_{11})+w_2S(d_{12})+...+w_nS(d_{1n})+\lambda=S(d_{1p}) \\ w_1S(d_{21})+w_2S(d_{22})+...+w_nS(d_{2n})+\lambda=S(d_{2p}) \\ \wr \\ w_nS(d_{n1})+w_2S(d_{n2})+...+w_nS(d_{nn})+\lambda=S(d_{np}) \\ w_1+w_2+...+w_n=1 \end{cases}

[editar] Kriging Simples

Para este caso, utiliza-se a média de todos os dados. Implica-se, portanto, em não se normalizar a média local dos pesos, como no caso anterior. Assim, teremos quase que a mesma equação, exceto pela exclusão de λ e pela última equação. A característica principal deste método é a geração de gráficos mais lisos e mais esteticamente suaves. Deve-se salientar que este caso é menos preciso que o caso anterior. Os valores dos pesos para o p-ésimo ponto serão dados por:

\begin{cases} w_1S(d_{11})+w_2S(d_{12})+...+w_nS(d_{1n})=S(d_{1p}) \\ w_1S(d_{21})+w_2S(d_{22})+...+w_nS(d_{2n})=S(d_{2p}) \\ \wr \\ w_nS(d_{n1})+w_2S(d_{n2})+...+w_nS(d_{nn})=S(d_{np}) \end{cases}

[editar] Obtendo o Ponto Interpolado

Ao obtermos os valores de w1,w2,...,wn, calcula-se o valor de fp:

f_p=w_1f_1+w_2f_2+...+w_nf_n\,

Desta maneira, calcula-se o valor interpolado para todos os pontos desejados. Ressalta-se que somente devem ser utilizados os valores adquiridos acima.

[editar] Interpolando Outros Pontos

A obtenção do valor interpolado em um outro ponto requer a repetição de todos os cálculos realizados a partir da obtenção do modelo de variograma. Desta forma, para aumentarmos a resolução que é pretendida, deve-se recorrer à métodos matemáticos para a resolução computacional. Diversos códigos foram desenvolvidos para esta resolução, mas um dos melhores algoritmos pode ser obtido no link abaixo. Ele fora desenvolvido inicialmente para a linguagem Fortran, porém ele foi recodificado para C com a ajuda da biblioteca fortran2c e se apresenta totalmente em C:

[editar] Links Externos

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com