Miguel de Cervantes y Saavedra - Don Quijote de la Mancha - Ebook:
HTML+ZIP- TXT - TXT+ZIP

Wikipedia for Schools (ES) - Static Wikipedia (ES) 2006
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Przemiana adiabatyczna - Wikipedia, wolna encyklopedia

Przemiana adiabatyczna

Z Wikipedii

czerwona i zielona - izotermy, niebieska - adiabata
Powiększ
czerwona i zielona - izotermy, niebieska - adiabata

Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość energii dostarczana lub odbierana jest z niego jako praca.

Spis treści

[edytuj] Przemiana adiabatyczna gazu doskonałego

Przemiana adiabatyczna jest przemianą, w której zmieniają się wszystkie parametry stanu gazu, m.in. ciśnienie, objętość właściwa, temperatura, energia wewnętrzna, entalpia, entropia, i inne. Ponieważ nie ma wymiany ciepła z otoczeniem, więc podczas sprężania rośnie temperatura gazu, a podczas rozprężania temperatura maleje. Podobnie jak w przypadku sprężania izotermicznego - maleje objętość a rośnie ciśnienie, jednak w sprężaniu adiabatycznym trzeba dodatkowo uwzględnić wzrost ciśnienia gazu (spowodowany wzrostem temperatury).

Przebieg przemiany adiabatycznej określa się prawem Poissona:

p V^{\kappa} = \operatorname{idem} \qquad

gdzie:

\kappa = \frac{c _{p} }{ c _{v} } = \frac{\alpha + 1}{\alpha} - wykładnik adiabaty, równy stosunkowi ciepła właściwego przy stałej objętości i przy stałym ciśnieniu. Współczynniki α zależą od liczby stopni swobody cząsteczek gazu i przyjmują wartości: 3/2 - dla gazów jednoatomowych, 5/2 - dla gazów dwuatomowych i 3 dla gazów wieloatomowych. Powietrze zawiera głównie gazy dwuatomowe, dlatego współczynnik α = 5/2, a κ = 7/5.

Przemiana adiabatyczna przebiega zwykle od stanu początkowego (1) do końcowego (2). Równanie Poissona można dla takiego przypadku zapisać następująco:

p_1 V_1^{\kappa} = p_2 V_2^{\kappa}

Wstawiając równania Clapeyrona i odpowiednio przekształcając można uzyskać inne postacie równania Poissona, wiążące ze sobą temperaturę i objętość oraz temperaturę i ciśnienie czynnika:

{T_1 \over T_2} = \left({V_2 \over V_1} \right)^{\kappa - 1}
{T_1 \over T_2} = \left({p_1 \over p_2} \right)^{ \kappa -1 \over \kappa}


Krzywe obrazujące procesy adiabatyczne zwane są adiabatami. Proces adiabatyczny jest szczególnym przypadkiem procesu politropowego.

[edytuj] Adiabata odwracalna i nieodwracalna

Przedstawiona powyżej zależność Poissona (zwana także równaniem adiabaty odwracalnej) obowiązuje dla przemiany gazu nielepkiego. Brak lepkości powoduje, że nie występują siły styczne, a więc i tacie wewnętrzne cząsteczek gazu. Do sprężenia w cylindrze takiego gazu zużylibyśmy tyle samo energii, ile uzyskalibyśmy potem z jego rozprężenia. Jeśli nie występowałoby tarcie między tłokiem a cylindrem oraz w innych elementach układu korbowego, to wał korbowy raz wprawiony w ruch obracałby się w nieskończoność powodując cykliczne sprężanie i rozprężanie gazu.

Niestety w rzeczywistości gaz nielepki nie istnieje. Podczas sprężania gazu w cylindrze musimy pokonać siły tarcia wewnętrznego (występującego wewnątrz gazu oraz między cząsteczkami gazu i ściankami cylindra). Musimy więc dostarczyć więcej pracy do sprężenia gazu lepkiego, niż by to było z gazem nielepkim. Również podczas rozprężania adiabatycznego występuje tarcie wewnętrzne. Z rozprężania gazu rzeczywistego uzyskamy mniej pracy, niż z gazu nielepkiego (ponieważ część pracy musi zostać spożytkowane na pokonanie sił tarcia wewnętrznego). Tak więc aby cyklicznie sprężać i rozprężać gaz rzeczywisty musimy dostarczać pracę z zewnątrz (wałem korbowym), a praca ta zostanie zamieniona na wewnętrzne ciepło tarcia. Wynikiem tarcia wewnętrznego jest bowiem zamiana pracy na ciepło (jak w przypadku każdego innego tarcia). Przemiana adiabatyczna gazu nielepkiego (przemiana beztarciowa) nazywana jest adiabatą odwracalną, natomiast przemiana gazu lepkiego – adiabatą nieodwracalną.

Podczas przemiany adiabatycznej odwracalnej entropia (będąca jednym z parametrów stanu) jest niezmienna, a entropia przemian adiabatycznych rzeczywistych (nieodwracalnych) rośnie. W obliczeniach przemian adiabatycznych zakłada się wstępnie, że przemiana jest odwracalna, a później uwzględnia się odpowiednie straty.

[edytuj] W technice

Podczas szybkiego zwiększania lub zmniejszania ciśnienia gazu w rzeczywistej maszynie energetycznej wymiana cieplna jest znacznie mniejsza od wykonywanej nad gazem pracy, dlatego szybkie sprężanie lub rozprężanie można w wielu przypadkach traktować jako przemianę adiabatyczną. Założenie to jest często stosowane w obliczeniach technicznych i inżynierskich, i w pewnych warunkach wprowadza znikomy błąd.

Podczas sprężania zwiększa się temperatura i entalpia gazu. Znajomość przyrostu entalpii umożliwia wyznaczenie pracy mechanicznej zużytej do sprężania. Zwykle w procesie sprężania celem jest uzyskanie odpowiedniego ciśnienia kosztem jak najmniejszej pracy (zależy nam więc na jak najmniejszym przyroście temperatury gazu). Wyjątkiem jest sprężanie powietrza w silniku tłokowym wysokoprężnym, gdzie celem jest uzyskanie odpowiednio wysokiej temperatury powietrza umożliwiającej samozapłon mieszanki paliwowo-powietrznej.

Podczas rozprężania adiabatycznego temperatura i entalpia gazu maleje, co znalazło zastosowanie w wielu dziedzinach techniki. Największe znaczenie dla cywilizacji ma rozprężanie czynnika obiegowego w turbinach cieplnych. Turbiny cieplne stanowią bowiem obecnie podstawowe źródło napędu generatorów elektrycznych. Podczas rozprężania w turbinie wymiana ciepła z otoczeniem jest tak znikoma, że prawie nie popełnia się błędu zakładając rozprężanie adiabatyczne. Prędkości czynnika w kanałach przepływowych turbiny wahają się w granicach od ok. 50 do ok. 500 m/s, co wręcz uniemożliwia wymianę ciepła z otoczeniem. Rozprężanie odbywa się tu w kanałach zbieżnych (konfuzorach), w których entalpia gazu zamieniana jest na energię kinetyczną. Energia kinetyczna może być następnie zamieniona na mechaniczną odprowadzaną wałem do generatora.

Spadek temperatury w wyniku rozprężania adiabatycznego jest wokorzystywany także w chłodziarkach i pompach ciepła.

[edytuj] W atmosferze

W atmosferze przemiana adiabatyczna zachodzi w wyniku wznoszenia się lub opadania mas powietrza. Podczas wznoszenia w wyniku zmniejszania się ciśnienia następuje ochładzanie masy powietrza, podczas opadania powietrze ogrzewa się. Zjawisko to odpowiada za pionowy gradient temperatury, zwiększone opady w górach od strony wiatru, ogrzewanie powietrza oraz zmniejszone opady po zawietrznej stronie gór.

[edytuj] Zobacz też

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com