Privacy Policy Cookie Policy Terms and Conditions Théorie moderne du portefeuille - Wikipédia

Théorie moderne du portefeuille

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).
Cet article est en cours de traduction depuis « Modern_portfolio_theory » .
→ Pour plus d'informations ou participer, vous pouvez consulter la page de discussion.

Étape 2/5 : En cours de Traduction.
• Merci de ne pas tenter de modifier cet article afin d'éviter les risques de conflits de versions.


Avertissement : le bandeau unique {{Projet:Traduction/Théorie moderne du portefeuille}} remplace désormais avantageusement tous ceux que vous utilisez actuellement. Veuillez consultez la page Projet:Traduction


La théorie moderne du portefeuille (TMP) expose comment des investisseurs rationnels utilisent la diversification afin d'optimiser leur portefeuille, et quel devrait être le prix d'un actif étant donné son risque par rapport au risque moyen du marché. Cette théorie fait appel aux concepts de frontière efficiente, modèle d'évaluation des actifs financiers, coefficient bêta, droite de marché des capitaux et droite de marché des titres.

Dans ce modèle, le rendement d'un actif est une variable aléatoire et un portefeuille est une combinaison linéaire pondérée d'actifs. Par conséquent, le rendement d'un portefeuile est également une variable aléatoire et possède une espérance et une variance.

Sommaire

[modifier] Idée de départ

L'idée de Markowitz dans sa gestion de portefeuille est simplement de panacher celui-ci d'une façon telle qu'on n'y fait pas de choix incohérents, conduisant par exemple à panacher des actions A et des actions B pour obtenir un couple revenu/risque moins bon à coût égal que ce qu'auraient procuré par exemple des actions C.

Sur le plan technique, il s'agit d'un problème d'optimisation quadratique assez banal. Son originalité est essentiellement l'application de ce modèle d'ingénieur au monde de la finance.

[modifier] Hypothèses d'information, risque et rendement

Le modèle fait la double hypothèse que

  • les marchés d'actifs financiers sont efficients. C'est l'hypothèse d'efficience du marché selon laquelle les prix et rendements des actifs sont censés refléter, de façon objective, toutes les informations disponibles concernant ces actifs.
  • les investisseurs sont averses au risque (comme montré par Daniel Bernoulli) : ils ne seront prêts à prendre plus de risques qu'en échange d'un rendement attendu supérieur. À l'inverse, un investisseur qui souhaite améliorer la rentabilité de son portefeuille doit accepter de prendre plus de risques. L'équilibre risque/rendement jugé optimal dépend de chaque investisseur : on accepte plus volontiers de risquer quelques millions quand on dispose de quelques milliards que quand ce n'est pas le cas.

[modifier] Espérance et variance

On suppose généralement que la préférence de l'investisseur pour un couple risque / rendement peut être décrite par une fonction d'utilité quadratique. De plus, les évolutions du marché sont supposés suivre une distribution symétrique de Pareto. Par conséquent, seuls le rendement attendu (l'espérance de gain) et la volatilité (l'écart type) sont les paramètres examinés par l'investisseur. Ce dernier ne tient pas compte des autres caractéristiques de la distribution des gains, comme son asymétrie ou même le niveau de fortune investi.

Selon le modèle :

  • le rendement d'un portefeuille est une combinaison linéaire de celui des actifs qui le composent, pondérés par leur poids wi dans le portefeuille. ;
  • la volatilité du portefeuille est une fonction de la corrélation entre les actifs qui le composent. Cette fonction n'est pas linéaire.

Mathématiquement :

En général, pour un portefeuille comportant n actifs :

  • Rendement attendu (espérance) :
\operatorname{E}(R_p) = \sum_{i=1}^n w_i \operatorname{E}(R_i) \quad
  • Variance du portefeuille :
La variance du portefeuille est la somme des produits des poids wi de chaque couple d'actifs par leur covariance \sigma_{ij} \, - cette somme inclut les poids au carré et les variances \sigma_{ii} \, (ou \sigma_i^2) pour chaque actif i. La covariance est souvent exprimée en terme de corrélation \rho_{ij} \, des rendements entre deux actifs où \sigma_{ij}  = \sigma_i \sigma_j \rho_{ij} \,
\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij} = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_i \sigma_j \rho_{ij}


  • Volatilité du portefeuille :
\sigma_p = \sqrt {\sigma_p^2}


Cas particuliers :

Pour un portefeuille composé de deux actifs :

Espérance : \operatorname{E}(R_p) = w_A \operatorname{E}(R_A) + (1 - w_A) \operatorname{E}(R_B) = w_A \operatorname{E}(R_A) + w_B \operatorname{E}(R_B)
Variance : \sigma_p^2  = w_A^2 \sigma_A^2  + w_B^2 \sigma_B^2 + 2w_Aw_B \sigma_{AB}

Lorsque le portefeuille est composé de trois actifs, la variance devient :

w_A^2 \sigma_A^2  + w_B^2 \sigma_B^2 + w_C^2 \sigma_C^2 + 2w_Aw_B \sigma_{AB}  + 2w_Aw_C \sigma_{AC} + 2w_B w_C \sigma_{BC}


(Comme on le voit, plus le nombre n d'actifs grandit, plus la puissance de calcul nécessaire est important : le nombre de termes de covariance est égal à n * (n-1) / 2. Pour cette raison, on utilise généralement des logiciels spécialisés. On peut néanmoins développer un modèle en utilisant des matrices ou dans une feuille de calcul d'un tableur.)

[modifier] Diversification

Un investisseur peut réduire le risque de son portefeuille simplement en détenant des actifs qui ne soient pas ou peu positivement corrélés, donc en diversifiant ses placements. Cela permet d'obtenir la même espérance de rendement en diminuant la volatilité du portefeuille.

Mathématiquement :

D'après les formules développées ci-avant, on comprend que lorsque le coefficient de corrélation entre deux actifs est inférieur à 1, la variance est plus petite que la simple somme pondérée des variances individuelles.

[modifier] La frontière efficiente

Chaque couple possible d'actifs peut être représenté dans un graphique risque/rendement. Pour chaque rendement, il existe un portefeuille qui minimise le risque. À l'inverse, pour chaque niveau de risque, on peut trouver un portefeuille maximisant le rendement attendu. L'ensemble de ces portefeuilles est appelé frontière efficiente ou frontière de Markowitz.

Cette frontière est convexe par construction : le risque n'augmente pas linéairement en fonction des poids des actifs dans le portefeuille.

La région au-dessus de la frontière ne peut être atteinte en détenant seulement des actifs risqués. Un tel portefeuille est impossible à construire. Les points sous la frontière sont dits sous-optimaux, et n'intéresseront pas un investisseur rationnel.

[modifier] L'actif sans risque

L'actif sans risque est un actif théorique qui rapporte le taux d'intérêt sans risque. Il est en général associé aux emprunts d'État à court terme. Cet actif possède une variance nulle, son rendement est donc connu à l'avance. Il n'est pas corrélé avec les autres actifs. Par conséquent, associé à un autre actif, il modifie linéairement l'espérance de rendement et la variance.

[modifier] 'Porfolio leverage'

[modifier] Portefeuille de marché

On comprend, d'après ce qui précéde, que l'investisseur averti, cherchera la plus grande diversification possible jusqu'à atteindre cette limite appelée frontière efficiente. Elle se présente sous la forme d'une partie de parabole (resp. hyperbole) suivant que l'on soit dans un repère (ecart-type, espérance de rendement) (resp. (variance, espérance de rendement)). Sachant maintenant que tous les investisseurs n'ont pas la même aversion au risque, certains choisiront de limiter leur risque en combinant par exemple une part d'actifs risqués complétée par l'actif hors risque. Pour déterminer ces types de portefeuilles "hybrides", on trace la courbe passant par l'actif hors-risque et tangente à la frontière efficiente. Ce dernier point de contact constitue le portefeuille du marché. Les combinaisons de portefeuille sur le segment entre l'actif hors-risque et le portefeuille du marché, dominent tous les autres portefeuilles.

[modifier] Droite de marché des capitaux

[modifier] Évaluation des actifs

[modifier] Risque systématique et risque spécifique

[modifier] Modèle d'évaluation des actifs financiers (CAPM)

[modifier] Droite de marché des titres (SML)

[modifier] Références

  • Markowitz, Harry M. (1952). Portfolio Selection, Journal of Finance, 7 (1), 77-91.
  • Sharpe, William F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19(3), 425-442.
  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Review of Economics and Statistics, 47
  • Tobin, James (1958). Liquidity preference as behavior towards risk, The Review of Economic Studies, 25, 65-86.
Portail de l'économie – Accédez aux articles de Wikipédia concernant l'économie.
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu