Mécanique hamiltonienne
Un article de Wikipédia, l'encyclopédie libre.
Cet article est une ébauche à compléter concernant la mécanique, vous pouvez partager vos connaissances en le modifiant. |
La mécanique hamiltonienne est une reformulation de la mécanique classique inventée par Hamilton en 1833.
Sommaire |
[modifier] Équations canoniques de Hamilton
[modifier] Rappels de mécanique lagrangienne
En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où le point représente la dérivation par rapport au temps.
Le lagrangien peut donc s'écrire formellement comme une fonction : , les variables indexées représentant les variables de ce type.
[modifier] Moment conjugué
En mécanique hamiltonienne, chaque vitesse généralisée est remplacée par la quantité de mouvement associée, aussi appelée moment conjugué ou encore impulsion généralisée :
En coordonnées cartésiennes, les quantités de mouvement sont équivalentes aux moments linéaires, alors qu'en coordonnées polaires elles correspondent aux moments angulaires. Lorsque les coordonnées généralisées sont choisies arbitrairement, il n'est plus possible de donner une interprétation intuitive aux moments conjugués.
[modifier] Hamiltonien
L'hamiltonien H est la transformée de Legendre du lagrangien :
Dans le membre de droite de cette formule, les vitesses sont supposées être exprimées en fonction des moments conjugués.
Si les équations qui définissent les coordonnées généralisées sont indépendantes du temps t, on peut montrer que H est égal à l'énergie totale E, elle-même étant égale à la somme de l'énergie cinétique T et de l'énergie potentielle V (H = E = T + V).
[modifier] Équations canoniques de Hamilton
Sous forme différentielle, les deux membres de la définition de H deviennent :
En utilisant la définition des moments conjugués donnée précédemment, on obtient les équations du mouvement de Hamilton, dites équations canoniques de Hamilton :
Les équations de Hamilton sont des équations différentielles du premier ordre et donc plus faciles à résoudre que les équations de Lagrange qui sont du second ordre. Néanmoins, les étapes qui conduisent à ces équations sont plus complexes que celles de la mécanique lagrangienne : à partir des coordonnées généralisées et du lagrangien, il faut calculer l'hamiltonien, exprimer les vitesses généralisées en fonction des moments conjugués et remplacer celles-ci dans la définition de l'hamiltonien. Finalement, il y a peu d'avantages à utiliser la méthode d'Hamilton plutôt que celle de Lagrange, les deux produisant bien sûr les mêmes résultats.
L'avantage principal de l'approche hamiltonienne est de fournir, grâce à la simplicité de son formalisme, un fondement théorique en mécanique. Par exemple, la mécanique quantique utilise un formalisme basé sur celui de la mécanique hamiltonienne.
On pourra aussi noter une certaine similitude entre les équations canoniques d'Hamilton et les équations de Maxwell.
[modifier] Exemple élémentaire : la particule non relativiste sur un axe
Soit une particule non relativiste de masse m se déplaçant sur un axe. On repère la position de cette particule par une coordonnée q. Supposons de plus que la particule est soumise à une force qui dérive de l'énergie potentielle V(q). Le lagrangien s'écrit alors :
Le moment conjugué vaut alors :
il s'identifie à la quantité de mouvement habituelle. Cette formule peut être inversée :
On obtient alors le hamiltonien par tranformée de Legendre :
Les équations canoniques conduisent alors à :
et à l'équation de la dynamique de Newton :
[modifier] Espace des phases
[modifier] Dynamique dans l'espace Euclidien
Considérons un système à N degrés de liberté décrits à l'instant t par :
- les N coordonnées généralisées , . On peut voir ces coordonnées comme les composantes d'un vecteur de .
- les N moments conjugués , . On peut également voir ces coordonnées comme les composantes d'un autre vecteur de .
A chaque instant, les 2N coordonnées (qi(t),pj(t)) définissent un point x(t) dans l'espace des phases à 2N dimensions.
[modifier] Dynamique sur une variété différentiable
Considérons un système à N degrés de liberté dont les N coordonnées généralisées qi(t) précisent la position d'un point p sur une variété différentielle M à N dimensions.. Le moment conjugué pj(t) est alors un élément de l'espace cotangent dans la direction j.
A chaque instant, les 2N coordonnées (qi(t),pj(t)) définissent dans ce cas un point x(t) dans l'espace des phases qui s'identifie à l'espace fibré cotangent à 2N dimensions. Cet espace des phases est naturellement muni de la forme symplectique définie par
[modifier] Flot hamiltonien
L'évolution dynamique du système selon les équations canoniques de Hamilton à partir d'une condition initiale engendre le flot hamiltonien , c'est à dire le groupe continu à un paramètre tel que :
La succession des positions x(t) dans l'espace des phases se traduit par une courbe continue, appelée orbite.
[modifier] Théorème de Liouville
Le flot hamiltonien préserve la mesure de Liouville sur l'espace des phases. Lorsque celui-ci est euclidien, cette mesure invariante sous le flot est simplement la mesure de Lebesgues sur :
La démonstration de ce théorème repose sur le fait que la divergence de la « vitesse » dans l'espace des phases est nulle :
où on a utilisé les équations canoniques pour conclure. Autrement dit, le « fluide hamiltonien » dans l'espace des phases est incompressible.
[modifier] Hypersurface d'énergie constante
Un système hamiltonien invariant par translation dans le temps satisfait toujours à la conservation de l'énergie :
de telle sorte que sa dynamique est en fait toujours restreinte à une hypersurface à 2N − 1 dimensions. Dans ce cas, la mesure de Liouville invariante sous la flot dans l'espace des phases induit une mesure invariante sous la flot sur l'hypersurface d'énergie constante, définie par :
où dΣ est la mesure sur l'hypersurface S induite par la métrique sur l'espace des phases.
[modifier] Système intégrable
Il peut exister d'autre constantes du mouvement indépendantes de l'énergie en plus de celle-ci. Lorsqu'un système invariant par translation défini sur dans le temps possède N constantes du mouvement indépendantes, on dit qu'il est intégrable. Sa dynamique est alors particulièrement simple.
[modifier] Articles connexes
- Mécanique classique
- Crochet de Poisson
- Transformation canonique
- Géométrie symplectique
- Théorie de Hamilton-Jacobi
- Théorème de Noether
- Système intégrable
- Théorie des perturbations
- Mécanique céleste
- Problème à N corps
- Hypothèse ergodique
- Théorème KAM
- Théorie du chaos
- Physique statistique
[modifier] Bibliographie
- Lev Landau & Evguéni Lifchitz ; Cours de physique théorique - Tome 1 : Mécanique, Mir (4ème édition-1982), ISBN 5-03-000198-0.
- T. W. B. Kibble & F.H. Berkshire ; Classical Mechanics, Prentice Hall (4ème édition-1997), ISBN 058225972X. Un excellent cours d'introduction à la mécanique, des fondements Newtoniens jusqu'au formalismes plus avancés de Lagrange et de Hamilton. Kibble est professeur émérite de Physique Théorique de l'Imperial College de Londres. Pour cette 4ème édition (avec un co-auteur), deux chapitres d'introduction aux idées de la théorie du chaos ont été inclus. Niveau : à partir du premier cycle universitaire. (N.B. : Il a existé une traduction française de l'édition précédente, publiée en son temps par Dunod.)
- Herbert Goldstein, Charles P. Poole & John L. Safko ; Classical mechanics, Addison-Wesley (3ème édition-2001), ISBN . Cet ouvrage de Goldstein est une référence absolue concernant les aspects théoriques modernes de la mécanique - formulations Lagrangienne et Hamiltonienne. Cette troisième édition, réalisée en collaboration, est complétée par un chapitre (chap. 10) sur les développements récents de la théorie du chaos. Le chapitre 3, consacré au problème à 3 corps, a été également partiellement remanié. Niveau second cycle universitaire. (Il a existé autrefois une traduction française d'une édition précédente.)
- Vladimir I. Arnold ; Mathematical methods of classical mechanics, Springer-Verlag (2ème édition-1989), ISBN . Les aspects mathématiques (principalement géométriques) de la théorie, dans ses formulations modernes - Lagrangienne \& Hamiltonienne -, par un mathématicien russe de premier plan, qui enseigne aujourd'hui à l'Université de Paris-Dauphine. À partir du second cycle universitaire.
- R. Abraham & J.E. Marsden ; Foundations of mechanics, the Benjamin/Cummings Publishing Company (2ème édition-1978), ISBN . Un livre imposant qui présente un exposé axiomatique rigoureux de la mécanique « à la Bourbaki », à réserver aux esprits matheux. Niveau second cycle universitaire minimum.
- Walter Thirring ; Classical mathematical physics - Dynamical systems & Field theory, Springer-Verlag (3ème édition-1997), ISBN . La première moitié de ce livre est une présentation rigoureuse de la mécanique, par un physicien mathématicien de l'Université de Vienne. Niveau plutôt second cycle universitaire.
|
|