祖冲之
维基百科,自由的百科全书
祖冲之(429年—500年),字文远,南北朝时期著名数学家、天文学家。
祖冲之祖籍范阳郡遒县(今河北涞水),为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。
祖冲之生于建康(今江苏南京)。祖家历代都对天文历法素有研究,祖冲之从小就有机会接触天文、数学知识。祖冲之青年时,就得到博学多才的名声,宋孝武帝听说后,派他到“华林学省”做研究工作。461年,他在南徐州(今江苏镇江)刺史府里从事,先后任南徐州从事史、公府参军。公元464年他调至娄县(今江苏昆山东北)任县令。在此期间他编制了《大明曆》,计算了圆周率。宋朝末年,祖冲之回到建康任谒者仆射,此后直到宋灭亡一段时间后,他花了较大精力来研究机械制造。494年到498年之间,他在南齐朝廷担任长水校尉一职,受四品俸禄。鉴于当时战火连绵,他写有《安边论》一文,建议朝廷开垦荒地,发展农业,安定民生,巩固国防。祖冲之在他72岁时去世。
祖冲之的主要成就在数学、天文历法和机械制造三个领域。此外歷史記載祖冲之精通音律,擅长下棋,还写有小说《述异记》。祖冲之著述很多,但大多都已失传。
祖冲之的儿子祖暅也是数学家。
为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。
目录 |
[编辑] 数学贡献
在数学上,祖冲之研究过《九章算术》和刘徽所做的注解,给《九章算术》和刘徽的《重差》作过注解。他还著有《缀术》一书,汇集了祖冲之父子的数学研究成果。这本书内容深奥,以至“学官莫能究其深奥,故废而不理”。《缀术》在唐代被收入《算经十书》,成为唐代国子监算学课本,当时学习《缀术》需要四年的时间,可见《缀术》的艰深。《缀术》曾经传至朝鲜,但到北宋时这部书就已轶失。人们只能通过其他文献了解祖冲之的部分工作:在《隋书·律曆志》中留有小段祖冲之关于圆周率工作的记载;唐代李淳风在《九章算术》注文中记载了祖冲之和儿子祖暅求球体积的方法。祖冲之还研究过“开差幂”和“开差立”问题,涉及二次方程和三次方程的求根问题。遗留下来的祖冲之的数学贡献主要有他对圆周率的计算结果和球体体积的计算公式。
[编辑] 计算圆周率
据《隋书·律曆志》记载,祖冲之把一丈化为一亿忽,以此为直径求圆周率,求得盈数(即过剩的近似值)为3.1415927;肭数(即不足的近似值)为3.1415926,圆周率的真值介于盈肭两数之间。《隋书》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。祖冲之的这一结果精确到小数点后第7位,直到一千多年后才由15世纪的阿拉伯数学家阿尔·卡西和16世纪的法国数学家韦达打破了这一纪录。
按照当时计算使用分数的习惯,祖冲之还采用了两个分数值的圆周率:“约率”22 / 7(或称之为“疏率”)以及“密率”355 / 113。在分母为1000以内的所有整分数中密率的比值最接近圆周率,这表明祖冲之可能是通过某种计算得到的这一比值。数学家华罗庚曾认为密率的求得,说明祖冲之可能已经掌握了连分数的概念。在欧洲直到16世纪才由德国人奥托和荷兰人安托尼兹求出了355 / 113这个比值。因此,为纪念这位伟大的中国古代数学家,日本数学家三上义夫建议把355 / 113称为“祖率”。
[编辑] 计算球体体积
祖冲之还和儿子祖暅一起,用巧妙的方法解决了球体体积的计算问题。
《九章算术》中曾认为,球体的外切圆柱体积与球体体积之比等于正方形与其内切圆面积之比,刘徽在他为《九章算术》作的注释中指出,原书的说法是不正确的,只有“牟合方盖”(垂直相交的两个圆柱体的共同部分的体积)与球体积之比,才正好等于正方形与其内切圆的面积之比。但刘徽没有给出“牟合方盖”的体积公式,所以也就得不出球体的体积公式。
祖冲之父子采用“幂势既同,则积不容异。”(即“等高处横截面积常相等的两个立体,其体积也必然相等”)这一原理,求出了“牟合方盖”的体积,而球体体积等于π / 4乘以“牟合方盖”体积,从而最终算出球体积为πd3 / 6(d为球直径)。
祖冲之父子所采用的“幂势既同,则积不容异”这一原理,在欧洲由意大利数学家卡瓦列里(B·Cavalieri,1598年—1647年)于17世纪重新发现,所以西文文献一般称该原理为卡瓦列里原理。为了纪念祖冲之父子发现这一原理的重大贡献,人们也称该原理为“祖暅原理”。
[编辑] 天文历法贡献
祖冲之在天文历法方面的成就,大都包含在他所编制的《大明曆》及为《大明曆》所写的《驳议》中。
在祖冲之之前,人们使用的历法是天文学家何承天编制的《元嘉曆》。祖冲之经过多年的观测和推算,发现《元嘉曆》存在很大的差误。于是祖冲之着手制定新的历法,宋孝武帝大明六年(公元462年)他编制成了《大明曆》。大明曆在祖冲之生前始终没能采用,直到梁武帝天监九年(公元510年)才正式颁布施行。《大明曆》的主要成就如下:
- 区分了回归年和恒星年,首次把岁差引进历法,测得岁差为45年11月差一度(今测约为70.7年差一度)。岁差的引入是中国历法史上的重大进步。
- 定一个回归年为365.24281481日(今测为365.24219878日),直到南宋宁宗庆元五年(公元1199年)杨忠辅制统天曆以前,它一直是最精确的数据。
- 采用391年置144闰的新闰周,比以往历法采用的19年置7闰的闰周更加精密。
- 定交点月日数为27.21223日(今测为27.21222日)。交点月日数的精确测得使得准确的日月食预报成为可能,祖冲之曾用大明曆推算了从元嘉十三年(公元436年)到大明三年(公元459年),23年间发生的4次月食时间,结果与实际完全符合。
- 得出木星每84年超辰一次的结论,即定木星公转周期为11.858年(今测为11.862年)。
- 给出了更精确的五星会合周期,其中水星和木星的会合周期也接近现代的数值。
- 提出了用圭表测量正午太阳影长以定冬至时刻的方法。
[编辑] 机械制造贡献
祖冲之还曾设计制造过许多精巧的机械,在文献《南齐书·祖冲之传》和《南史·祖冲之传》中有所记载。他曾经设计制造过利用水力舂米、磨面的水碓磨;重新铸造了当时已经失传了的指南车,随便车子怎样转弯,车上的铜人总是指着南方;制造了"千里船",在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还设计制造过计时仪器漏壶和欹器。
[编辑] 著作
《隋书·经籍志》录有《长水校尉祖冲之集》五十一卷,但现已遗失。
散见于各种史籍记载的还有以下著作:
- 《安边论》,已遗失。
- 《述异记》十卷,已遗失。
- 《易老莊义释》,已遗失。
- 《论语孝经注》,已遗失。
- 《缀术》六卷,已遗失。
- 《九章述义注》九卷,已遗失。
- 《重差注》一卷,已遗失。
- 《大明曆》
- 《上大明曆表》
- 《驳议》
- 《开立圆术》
[编辑] 请参阅
[编辑] 相关链接
- 祖冲之① 曹增祥 祖冲之传记。
- 祖冲之② 曹增祥 祖冲之传记。
- 祖冲之设计制造的几种机械及其复原问题 张柏春
- 祖冲之 其中有祖冲之成就的详细介绍。
- 南齐书·列传第三十三—文学 其中有祖冲之传。
- 南史·列传第六十二 其中有祖冲之传。
- 隋书·志第十一—律历上 其中有祖冲之计算圆周率结果的简短记载。