Privacy Policy Cookie Policy Terms and Conditions Потужність множини - Вікіпедія

Потужність множини

Матеріал з Вікіпедії — вільної енциклопедії.

ПОТУЖНІСТЬ МНОЖИНИ - в теорії множин узагальнення поняття кількості елементів множини. Потужність множини A позначається як |A| або #A та позначається кардинальним числом (або кардиналом).

Зміст

[ред.] Потужність скінченних множин

Для множин зі скінченною кількістю елементів, потужність множини є фактично кількістю елементів цієї множини. Інакше можна сказати, що множина A є скінченною, якщо існує таке натуральне число n, що A ~ {k, kNkn}. В іншому випадку, множина називається нескінченною.

Між двома скінченними множинами A і B існує взаємно однозначна відповідність тоді і тільки тоді, коли їхні потужності співпадають, тобто |A|=|B|.

Нехай A = {a1,a2,...,an} - скінченна множина з n елементів (|A|=n), тоді кількість усіх підмножин множини A дорівнює 2n, тобто 2|A|.

Множину всіх підмножин деякої множини A (скінченної або нескінченної) часто позначають через β(A) (або B(A) чи 2|A|) і називають булеаном множини A. Очевидно, що для скінченної множини A виконується |B(A)|= 2|A|.

[ред.] Потужність нескінченних множин

В загальному випадку, справедливому і для нескінченних множин, множини A та B є рівнопотужні, або мають однакову потужність, якщо можна встановити взаємно однозначну відповідність між елементами цих множин, тобто якщо існує бієкція f:AB. Рівнопотужні множини позначаються як A ~ B.

Відношення рівнопотужності є рефлексивним, симетричним та транзитивним, тобто є відношенням еквівалентності.

Для нескінченних множин потужність множини може співпадати з потужністю її власної підмножини.

Приклади:

Множина натуральних чисел N рівнопотужна множині S={1,4,9,16,...}, яка складається з квадратів натуральних чисел. Необхідна бієкція відповідність встановлюється за законом (n,n2), n∈N, n2S.

Множина Z всіх цілих чисел рівнопотужна множині P всіх парних чисел. Тут взаємно однозначна відповідність встановлюється таким чином: (n,2n), n∈Z, 2n∈P.

[ред.] Числа алеф

Потужність множини натуральних чисел N позначається символом \aleph_0 (алеф-нуль). Наступні кардинальні числа в порядку зростання позначають \aleph_1, \aleph_2,\dots.

[ред.] Зліченність та скінченність множин

Множина A називається зліченною, або зліченно-нескінченною, якщо |A| ~ |N|. В цьому випадку кажуть, що елементи такої множини можна занумерувати. Зліченними є множини цілих Z, натуральних N та раціональних Q чисел.

Множина, яка є скінченна, або зліченна, називається не більш ніж зліченно.

Нескінченна підмножина зліченної множини є зліченна. Також нескінченна множина містить зліченну підмножину.

Для незліченних множин, їхня потужність \ge \aleph_0. Тобто, зліченна множина в певному розумінні є "найменшою" з нескінченних множин. Незліченними є множини дійсних R та комплексних C чисел.

[ред.] Потужність контінуума

Про множини, рівнопотужні множині дійсних чисел [або дійсних чисел з інтервалу (0, 1)] кажуть, що вони мають потужність континуума, і потужність таких множин позначається символом c. Континуум-гіпотеза стверджує, що с=\aleph_1.

[ред.] Порівняння потужностей

Докладніше про це див. в статті Кардинальне число

Потужності множин можна порівнювати. Тобто можливі три випадки:

  1. |A|=|B| або A та B рівнопотужні;
  2. |A|>|B|або A потужніше B, тобто A містить власну підмножину, рівнопотужну B, але A и B не рівнопотужні;
  3. |A|<|B| або B потужніше A, в цьому випадку B містить власну підмножину, рівнопотужну А, але А та B не рівнопотужні.

Ситуація, в якій A та B не рівнопотужні, і в жодному з них немає частини, рівнопотужній іншій множині, в теорії множин неможлива. Над кардинальними числами можна проводити арифметичні операції. Докладніше дивись Арифметика кардиналів

[ред.] Дивись також

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu