ตัวหาร
จากวิกิพีเดีย สารานุกรมเสรี
ในคณิตศาสตร์ ตัวหาร (divisor) ของจำนวนเต็ม n หรือเรียกว่า ตัวประกอบ (factor) ของ n คือจำนวนเต็มที่หาร n ได้โดยไม่มีเศษเหลือ ตัวอย่างเช่น 7 เป็นตัวหารของ 42 เพราะว่า 42/7 = 6 เราจะเรียกว่า 42 หารด้วย 7 ลงตัว หรือ 42 เป็นพหุคูณของ 7 หรือ 7 หาร 42 ลงตัว และเราจะเขียนว่า 7 | 42 ตัวหารสามารถเป็นจำนวนบวกหรือจำนวนลบได้ ตัวหารที่เป็นบวกของ 42 คือ {1, 2, 3, 6, 7, 14, 21, 42}
กรณีพิเศษ: 1 และ -1 เป็นตัวหารของจำนวนเต็มทุกจำนวน และจำนวนเต็มทุกจำนวนเป็นตัวหารของ 0 จำนวนที่หารด้วย 2 ลงตัวเรียกว่า จำนวนคู่ จำนวนที่ไม่ใช่จำนวนคู่เรียกว่าจำนวนคี่
สำหรับชื่อของการหารในเลขคณิต: ถ้า a/b=c แล้ว a คือ ตัวตั้งหาร, b คือ ตัวหาร และ c คือ ผลหาร
[แก้] หลักเกณฑ์ของตัวหารที่มีค่าน้อย
มีหลักเกณฑ์ที่ช่วยให้หาตัวหารที่มีค่าน้อยๆของจำนวน โดยดูจากเลขโดดได้
หลักเกณฑ์การหารคือหลักที่ช่วยในการหาว่าจำนวนนี้หารด้วยจำนวนอื่นๆลงตัวหรือไม่ ในเลขฐานสิบ มีหลักเกณฑ์การหารคือ:
- จำนวนหารด้วย 2 ลงตัว ก็ต่อเมื่อ เลขโดดหลักสุดท้าย หารด้วย 2 ลงตัว
- จำนวนหารด้วย 3 ลงตัว ก็ต่อเมื่อ ผลบวกของเลขโดดทุกหลัก หารด้วย 3 ลงตัว
- จำนวนหารด้วย 4 ลงตัว ก็ต่อเมื่อ จำนวนที่เป็นเลขโดด 2 หลักสุดท้าย หารด้วย 4 ลงตัว
- จำนวนหารด้วย 5 ลงตัว ก็ต่อเมื่อ เลขโดดหลักสุดท้ายคือ 0 หรือ 5
- จำนวนหารด้วย 6 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 2 และ 3 ลงตัว
- จำนวนหารด้วย 7 ลงตัว ก็ต่อเมื่อ ผลลัพธ์ของการนำ 2 เท่าของเลขโดดหลักสุดท้าย ไปลบจำนวนที่นำหลักสุดท้ายทิ้งไป หารด้วย 7 ลงตัว (เช่น 364 หารด้วย 7 ลงตัว เพราะ 36-2×4 = 28 หารด้วย 7 ลงตัว)
- จำนวนหารด้วย 8 ลงตัว ก็ต่อเมื่อ จำนวนที่เป็นเลขโดด 3 หลักสุดท้าย หารด้วย 8 ลงตัว
- จำนวนหารด้วย 9 ลงตัว ก็ต่อเมื่อ ผลบวกของเลขโดดทุกหลัก หารด้วย 9 ลงตัว
- จำนวนหารด้วย 10 ลงตัว ก็ต่อเมื่อ เลขโดดหลักสุดท้ายคือ 0
- จำนวนหารด้วย 11 ลงตัว ก็ต่อเมื่อ ผลบวกสลับของเลขโดดทุกหลัก หารด้วย 11 ลงตัว (เช่น 182919 หารด้วย 11 ลงตัวเพราะ 1-8+2-9+1-9 = -22 หารด้วย 11 ลงตัว)
- จำนวนหารด้วย 12 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 3 และ 4 ลงตัว
- จำนวนหารด้วย 13 ลงตัว ก็ต่อเมื่อ ผลลัพธ์ของการนำ 9 เท่าของเลขโดดหลุกสุดท้าย ไปลบจำนวนที่ลบหลักสุดท้ายทิ้งไป หารด้วย 13 ลงตัว (เช่น 858 หารด้วย 13 ลงตัว เพราะ 85-9×8 = 13 หารด้วย 13 ลงตัว)
- จำนวนหารด้วย 14 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 2 และ 7 ลงตัว
- จำนวนหารด้วย 15 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 3 และ 5 ลงตัว
[แก้] ข้อเท็จจริง
หลักพื้นฐาน:
- ถ้า a | b และ a | c, แล้ว a | (b + c)
- ถ้า a | b และ b | c, แล้ว a | c
- ถ้า a | b และ b | a, แล้ว a = b or a = -b
- ถ้า a | bc และ หรม(a,b)=1 แล้ว a|c
เราเรียกจำนวนที่หาร n ลงตัวและมีค่าไม่เท่ากับ n ว่า"ตัวหารแท้"(proper divisor) ของ n
เราเรียกจำนวนที่มีค่ามากกว่า 1 และมี 1 เป็นตัวหารแท้เพียงตัวเดียวว่า "จำนวนเฉพาะ"
จากทฤษฎีบทมูลฐานของเลขคณิต จำนวนเต็มใดๆสามารถเขียนให้อยู่ในรูปผลคูณของกำลังของจำนวนเฉพาะได้
เราเรียกจำนวนใดๆว่าเป็น "จำนวนสมบูรณ์" (perfect number) เมื่อจำนวนนั้นมีค่าเท่ากับผลบวกของตัวหารแท้ทั้งหมดของมัน จำนวนใดๆที่ไม่สมบูรณ์มีความเป็นไปได้คือ "ขาด" (deficient) ไม่ก็ "เกิน" (abundant)
ฟังก์ชันหลายฟังก์ชันเกี่ยวกับการการหารจำนวนเต็มเป็นฟังก์ชันคูณ(multiplicative function) ยกตัวอย่างเช่น
- ฟังก์ชัน กำหนดโดย d(n)= จำนวนของตัวหารบวกทั้งหมดของ n
- ฟังก์ชัน กำหนดโดย σ(n)= ผลบวกของตัวหารบวกทั้งหมดของ n
[แก้] ดูเพิ่ม
- ตารางตัวประกอบเฉพาะ — ตารางของตัวประกอบเฉพาะตั้งแต่ 1-1000
- ตารางตัวหาร — ตารางของตัวหารที่เป็นจำนวนเฉพาะและไม่เป็นจำนวนเฉพาะตั้งแต่ 1-1000