Teoria dos grupos
Origem: Wikipédia, a enciclopédia livre.
Em Matemática, teoria dos grupos é o ramo que estuda os grupos.
[editar] Introdução
Grupos são usados na Matemática e nas ciências em geral para capturar a simetria interna de uma estrutura na forma de automorfismos de grupo. Uma simetria interna está normalmente associada com alguma propriedade invariante, e o conjunto de transformações que preserva este invariante, juntamente com a operação de composição de transformações, forma um grupo chamado um grupo de simetria.
A teoria de Galois, que é a origem histórica do conceito de grupo, procura descrever as simetrias das equações satisfeitas pelas soluções de uma equação polinomial. Os grupos solúveis são assim chamados devido ao papel proeminente que possuem nesta teoria.
Grupos abelianos estão presentes em várias estruturas estudadas em álgebra abstrata, como anéis, corpos, e módulos.
Na topologia algébrica, grupos são usados para descrever os invariantes de espaços topológicos. Eles são chamados de "invariantes" porque não mudam se o espaço é submetido a uma transformação. Exemplos incluem o grupo fundamental, grupo de homologias e o grupo de cohomologias.
O conceito de grupo de Lie (em homenagem ao matemático Sophus Lie) é importante no estudo de equações diferenciais em variedades; ele combina análise e teoria de grupos e é portanto a ferramenta certa para descrever as simetrias das estruturas analíticas. Ánalise neste e outros grupos é chamada de análise harmônica.
Na análise combinatória, a noção de grupo de permutação e o conceito de ação de um grupo são frequentemente utilizados para simplificar a contagem de um conjunto de objetos.
A compreensão da teoria de grupos é fundamental na Física, onde é utilizada para descrever as simetrias que as leis da Física devem obedecer. O interesse da Física na representação de grupos é grande, especialmente em grupos de Lie, pois suas representações podem apontar o caminho para "possíveis" teorias físicas. Em Química, grupos são utilizados para classificar estruturas cristalinas e a simetrias das moléculas.
Exemplos da Física:
- Modelo padrão
- Teorias de gauge também chamadas de Teorias de calibre