Privacy Policy Cookie Policy Terms and Conditions Twierdzenie Hahna-Banacha - Wikipedia, wolna encyklopedia

Twierdzenie Hahna-Banacha

Z Wikipedii

Twierdzenie Hahna-Banacha - podstawowe twierdzenie analizy funkcjonalnej sformułowane i udowodnione niezależnie przez Hansa Hahna i Stefana Banacha w latach 20-stych XX wieku.

Twierdzenie to mówi o możliwości rozszerzenia ograniczonych funkcjonałów liniowych z podprzestrzeni przestrzeni unormowanej na całą przestrzeń, a także o bogatej strukturze przestrzeni dualnej.

Spis treści

[edytuj] Twierdzenie

[edytuj] Sformułowanie

Przypuśćmy, że

(a) X jest przestrzenią liniową nad ciałem liczb rzeczywistych {\mathbb R},
(b) p:X\longrightarrow {\mathbb R} jest funkcjonałem podaddytywnym, tzn
\big(\forall x,y\in X\big)\big(p(x+y)\leq p(x)+p(y)\big) oraz
\big(\forall\alpha\geq 0\big)(\forall x\in X\big)\big(p(\alpha x)=\alpha p(x)\big),
(c) M \subset X jest podprzestrzenią liniową przestrzeni X,
(d) \varphi :M \to {\mathbb R} jest odwzorowaniem liniowym takim, że \varphi(x)\leq  p(x) dla wszystkich x\in M.

Wówczas istnieje funkcjonał liniowy \Phi :X\to{\mathbb R} taki, że \Phi\upharpoonright M=\varphi oraz \Phi(x)\leq p(x) dla wszystkich x\in X.

[edytuj] Uwagi o dowodzie

  • Zwykle dowód twierdzenia Hahna-Banacha jest budowany przy użyciu lematu Kuratowskiego-Zorna, choć niektórzy autorzy podają dowody indukcyjne (dowody podane przez Hahna w 1927 i Banacha w 1929 były właśnie indukcyjne).
  • Przy pomocy twierdzenia Hahna-Banacha można udowodnić paradoks Banacha-Tarskiego[1], więc każdy dowód twierdzenia Hahna-Banacha wymaga pewnej formy aksjomatu wyboru.
  • Aksjomat o wyborach zależnych wystarczy dla dowodu twierdzenia Hahna-Banacha dla przestrzeni ośrodkowych. Twierdzenie o rozszerzaniu filtrów do ultrafiltrów wystarczy do udowodnienia twierdzenia Hanha-Banacha w pełnej ogólności, ale to ostatnie twierdzenie nie implikuje że każdy filtr jest zawarty w filtrze maksymalnym.

[edytuj] Wnioski

Niech {\bold K} będzie ciałem liczb rzeczywistych {\mathbb R} lub ciałem liczb zespolonych {\mathbb C}.

  • Przypuśćmy, że
(a) X jest przestrzenią liniową nad {\bold K}, a \rho:X\longrightarrow [0,\infty) jest seminormą,
(b) M\subseteq X jest podprzestrzenią liniową, oraz \varphi :M \to {\bold K} jest funkcjonałem liniowym takim, że |\varphi(x)|\leq\rho(x) dla wszystkich x\in M.
Wówczas istnieje funkcjonał liniowy \Phi :X\to{\bold K} taki, że \Phi\upharpoonright M=\varphi oraz |\Phi(x)|\leq \rho(x) dla wszystkich x\in X.
  • Jeśli X jest przestrzenią unormowaną, M jest jej podprzestrzenią (niekoniecznie domkniętą), oraz \varphi:M\longrightarrow {\bold K} jest ograniczonym funkcjonałem liniowym, to \varphi może być przedłużone do ograniczonego funkcjonału liniowego \Phi\in X^* takiego że \|\Phi\|=\|\varphi\|.
  • Jeśli X jest przestrzenią unormowaną i x\in X, to
\|x\|=\sup\big(\big\{|\varphi(x)|:\varphi\in X^*\ \wedge\ \|\varphi\|\leq 1\big\}\big)

i kres górny jest osiągnięty (tzn \|x\|=|\varphi(x)| dla pewnego \varphi\in X^* o normie \|\varphi\|\leq 1).

  • Jeśli X jest przestrzenią unormowaną, M jest jej liniową podprzestrzenią domkniętą i x\in X\setminus M, to istnieje funkcjonał liniowy \varphi\in X^* taki że f(x) = 1, \varphi\upharpoonright M\equiv 0 oraz \|\varphi\|=1/{\rm dist}(x,M).


[edytuj] Bibliografia

  1. Janusz Pawlikowski, The Hahn-Banach theorem implies the Banach-Tarski paradox. Fundamenta Mathematicae 138 (1991)

[edytuj] Zobacz też

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu