Privacy Policy Cookie Policy Terms and Conditions Grupa Lorentza - Wikipedia, wolna encyklopedia

Grupa Lorentza

Z Wikipedii

Zachowanie odległości (izometria) w czasoprzestrzeni Minkowskiego narzuca warunki

g_{\mu \nu}\Lambda^{\mu}_{\rho}\Lambda^{\nu}_{\tau}=g_{\rho \tau}.

W tradycyjnym zapisie macierzowym warunek ten ma postać

ΛTgΛ = g

gdzie macierz g=diag(1,-1,-1,-1) jest macierzą diagonalną o sygnaturze (+,-,-,-). Gdy ograniczymy się tylko do podprzestrzeni 3 - wymiarowej (g -> -I) czasoprzestrzeni, warunek ten definiuje transformacje ortogonalne grupy O(3) (grupa obrotów w przestrzeni 3 - wymiarowej). Macierze Λ nazywamy macierzami Lorentza. Tworzą one grupę Lorentza z mnożeniem grupowym zdefiniowanym jako mnożenie macierzy. Grupa Lorentza jest podgrupą szerszej grupy grupę Poincarégo:

x^{\mu} \rightarrow {x'}^{\mu}=\Lambda^{\mu}_{\nu}x^{\nu}.

W zbiorze transformacji Lorentza istnieje transformacja jednostkowa (Λ=I), transformacja odwrotna i składanie transformacji Lorentza też jest transformacją Lorentza.

Właściwe transformacje Lorentza otrzymujemy, gdy ograniczymy się do transfomacji mieszających czas np. z jedną składową przestrzenną (w kierunku ruchu układu współrzędnych względem siebie, np. wzdłuż osi x1). Wtedy macierz g=diag(1,-1) i warunek na transformacje Lorentza definiuje grupę obrotów hiperbolicznych O(1,1). Macierz ma prostą 2 - wymiarową postać

\Lambda=\begin{pmatrix}a &b\\c&d\end{pmatrix}.

Warunek definujący macierze Lorentza daje związki

a2c2 = 1
ab = cd
d2b2 = 1

Z dokładnością do znaku, najprostsze rozwiązanie ma postać macierzy obrotu hiperbolicznego

\Lambda=\begin{pmatrix}ch(\varphi) &sh(\varphi)\\sh(\varphi)&ch(\varphi)\end{pmatrix},

ponieważ funkcje te spełniają warunek ch^2(\varphi)-sh^2(\varphi)=1. \varphi jest ciągłym parametrem. Macierze te podobnie jak macierze ortogonalne grupy SO(2) tworzą grupę SO(1,1). Transformacje Larentza można teraz zapisać jako

\begin{pmatrix}x^0\\x^1\end{pmatrix}\rightarrow \begin{pmatrix}x'^0\\x'^1\end{pmatrix}= \begin{pmatrix}ch(\varphi) &sh(\varphi)\\sh(\varphi)&ch(\varphi)\end{pmatrix}\begin{pmatrix}x^0\\x^1\end{pmatrix}

Parametr \varphi może być zamieniony na bardziej fizyczny

th(\varphi)=\frac{v}{c}

opisujący względny ruch obu układów współrzędnych. Daję (po przekształceniach) to jawną postać transformacji Lorentza

t \rightarrow t'=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}(t+\frac{v}{c^2}x^1),
x^1 \rightarrow x'^1=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}(x^1+v t).

Transformacja ta prowadzi do odpowiednich praw składania prędkości (innych niż dla transformacji Galileusza). Definiując

u=\frac{dx^1}{dt} i u'=\frac{dx'^1}{dt'} otrzymujemy
u'=\frac{u + v}{(1 + \frac{v u}{c^2})}.

Z tego prawa dodawania prędkości wynika, że gdy w jednym układzie ciało porusza się z prędkościa u=c to w drugim układzie poruszającym się z prędkoscią v ciało nadal poruszać się będzie z prędkością c.

Ogólnie grupa Lorentza parametryzowana jest przez 6 niezależnych parametrów. Trzy parametry związane są z grupa obrotów gdzie istnieją trzy niezależne generatory (Ti i=1,2,3). Trzy następne parametry związane są z właściwymi transformacjami Lorentza. Tak na przykład, pełna transformacja Lorentza wzdłuż pierwszej osi ma postać

\begin{pmatrix}x^0\\x^1\\x^2\\x^3\end{pmatrix}\rightarrow  \begin{pmatrix}x'^0\\x'^1\\x'^2\\x'^3\end{pmatrix}= \begin{pmatrix}ch(\varphi) &sh(\varphi)&0&0\\sh(\varphi)&ch(\varphi)&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}\begin{pmatrix}x^0\\x^1\\x^2\\x^3 \end{pmatrix}

generowana jest \Lambda=e^{iK_1 \varphi} przez generator

K_1 =\begin{pmatrix}0 &-i&0&0\\-i&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}

Takich generatorów jest też trzy (Ki i=1,2,3). Z 6 tych generatorów (T i K) zbudować można antysymetryczną macierz generatorów Mμν tak, że

M0,i = Ki,
Ti = εi,j,kMi,j.
i,j

Generatory grupy Lorentza, będące algebrą Liego tej grupy spełniają związki

  • [Mμν,Mρσ] = ημρMνσ − ημσMνρ − ηνρMμσ + ηνσMμρ

gdzie Mμν jest infinitezymalnym generatorem transformacji Lorentza.


Zobacz też: Grupa Poincaré, Grupa Lorentza

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu