Effetto Doppler
Da Wikipedia, l'enciclopedia libera.
L'effetto Doppler è un cambiamento apparente della frequenza o della lunghezza d'onda di un'onda percepita da un osservatore che si trova in movimento rispetto alla sorgente delle onde. Per quelle onde che si trasmettono in un mezzo, come le onde sonore, la velocità dell'osservatore e dell'emettitore vanno considerate in relazione a quella del mezzo in cui sono trasmesse le onde. L'effetto Doppler totale può quindi derivare dal moto di entrambi, ed ognuno di essi è analizzato separatamente.
Indice |
[modifica] Storia
L'effetto fu analizzato per la prima volta da Christian Andreas Doppler nel 1845. Procedette quindi a verificare la sua analisi in un famoso esperimento: si piazzò accanto ai binari della ferrovia, e ascoltò il suono emesso da un vagone pieno di musicisti, assoldati per l'occasione, mentre si avvicinava e poi mentre si allontanava. Confermò che l'altezza del suono era più alta quando l'origine del suono si stava avvicinando, e più bassa quando si stava allontanando, dell'ammontare predetto. Hippolyte Fizeau scoprì indipendentemente lo stesso effetto nelle onde elettromagnetiche nel 1848 (in Francia, l'effetto è a volte chiamato "effetto Doppler-Fizeau").
[modifica] Osservazione diretta del fenomeno: l'ambulanza
Oggi è molto facile constatare l'effetto Doppler: basta ascoltare la differenza nel suono emesso dalla sirena di un mezzo di soccorso quando si avvicina e quando si allontana. L'effetto è più evidente con mezzi molto veloci.
Seguendo questo link si può vedere un'animazione che spiega chiaramente l' effetto doppler. Per vedere l'animazione occorre aver installato Java sul proprio computer.
[modifica] Spiegazione
È importante notare che la frequenza del suono emesso dalla sorgente non cambia. Per comprenderne il funzionamento, consideriamo la seguente analogia: qualcuno lancia una palla ogni secondo nella nostra direzione. Assumiamo che le palle viaggino con velocità costante. Se colui che le lancia è fermo, riceveremo una palla ogni secondo. Ma, se si sta invece muovendo nella nostra direzione, ne riceveremo un numero maggiore perché esse saranno meno spaziate. Al contrario, se si sta allontanando ne riceveremo di meno. Ciò che cambia è quindi la lunghezza d'onda; come conseguenza, l'altezza del suono percepito cambia.
Se una sorgente in movimento sta emettendo onde con una frequenza f0, allora un osservatore stazionario (rispetto al mezzo di trasmissione) percepirà le onde con una frequenza f data da:
dove v è la velocità delle onde nel mezzo e vs, r è la velocità della sorgente rispetto al mezzo (considerando solo la direzione che unisce sorgente ed osservatore), positiva se verso l'osservatore, e negativa se nella direzione opposta).
Un'analisi simile per un osservatore in movimento e una sorgente stazionaria fornisce la frequenza osservata (la velocità dell'osservatore è indicata come vo):
In generale, la frequenza osservata è data da:
dove vo è la velocità dell'osservatore, vs è la velocità della sorgente, vm è la velocità del mezzo, e tutte le velocità sono positive se nella stessa direzione lungo cui si propaga l'onda, o negative se nella direzione opposta.
Il primo tentativo di estendere l'analisi di Doppler alle onde luminose fu fatto poco dopo da Fizeau. Ma le onde luminose non richiedono un mezzo per propagarsi, e un corretto trattamento dell'effetto Doppler per la luce richiede l'uso della Relatività speciale. Vedi effetto Doppler relativistico.
[modifica] Applicazioni
[modifica] Vita quotidiana
La sirena di un'ambulanza inizierà ad essere percepita più alta del suo tono effettivo, si abbasserà mentre passa accanto all'osservatore, e continuerà più bassa del suo tono effettivo mentre si allontana dall'osservatore. John Dobson ha descritto l'effetto in questo modo:
- "La ragione per cui il tono di una sirena cambia è che non ti ha colpito".
In altre parole, se la sirena si stesse avvicinando direttamente verso l'osservatore (come in questa animazione), il tono sarebbe rimasto costante (anche se più alto dell'originale) fino a raggiungere l'osservatore, e salterebbe immediatamente ad un tono inferiore una volta che lo avesse oltrepassato (sempre che l'osservatore sia ancora in grado di sentirla). Poiché, normalmente, la sirena passa ad una certa distanza dall'osservatore, la sua velocità radiale cambia continuamente, in funzione dell'angolo tra la linea di vista dell'osservatore e la velocità vettoriale della sirena:
dove vs è la velocità della sirena rispetto al mezzo di trasmissione, e θ è l'angolo tra la direzione di moto della sirena e la linea di vista tra la sirena e l'osservatore.
[modifica] Astronomia
L'effetto Doppler, applicato alle onde luminose, è fondamentale in astronomia. Interpretandolo come dovuto ad un effettivo moto della sorgente (esistono anche interpretazioni alternative, ma meno diffuse), è stato usato per misurare la velocità con cui stelle e galassie si stanno avvicinando o allontanando da noi, per scoprire che una stella apparentemente singola è, in realtà, una stella binaria con componenti molto vicine tra loro, e anche per misurare la velocità di rotazione di stelle e galassie.
L'uso dell'effetto Doppler in astronomia si basa sul fatto che lo spettro elettromagnetico emesso dagli oggetti celesti non è continuo, ma mostra delle linee spettrali a frequenze ben definite, correlate con le energie necessarie ad eccitare gli elettroni di vari elementi chimici. L'effetto Doppler è riconoscibile quando le linee spettrali non si trovano alle frequenze ottenute in laboratorio, utilizzando una sorgente stazionaria. La differenza in frequenza può essere tradotta direttamente in velocità utilizzando apposite formule. Poiché i colori posti ai due estremi dello spettro visibile sono il blu (per lunghezze d'onda più corte) e il rosso (per lunghezze d'onda più lunghe), l'effetto Doppler è spesso chiamato in astronomia spostamento verso il rosso se diminuisce la frequenza della luce, e spostamento verso il blu se l'aumenta.
L'effetto Doppler ha condotto allo sviluppo delle teorie sulla nascita ed evoluzione dell'Universo come il Big Bang, basandosi sul sistematico spostamento verso il rosso mostrato da quasi tutte le galassie esterne. Tale effetto è stato codificato nella legge di Hubble.
[modifica] Radar
Per approfondire, vedi la voce Radar Doppler. |
L'effetto Doppler è anche usato in alcune forme di radar per misurare la velocità degli oggetti rilevati. Un fascio radar è lanciato contro un oggetto in movimento, per esempio un'automobile, nel caso dei radar in dotazione alle forze di polizia di molti Paesi del mondo. Se l'oggetto si sta allontanando dall'apparecchio radar, ogni onda di ritorno ha dovuto percorrere uno spazio maggiore della precedente per raggiungere l'oggetto e tornare indietro, quindi lo spazio tra due onde successive si allunga, e la frequenza delle onde radio cambia in modo misurabile. Usando le formule dell'effetto Doppler si può risalire alla velocità dell'oggetto.
[modifica] Medicina
L'effetto Doppler è anche usato in medicina per la rilevazione della velocità del flusso sanguigno. Tale principio infatti è sfruttato dai Flussimetri Eco-Doppler (ADV, ovvero Acoustic Doppler Velocimeter), nei quali una sorgente di onde sonore, generalmente ultrasuoni, viene orientata opportunamente. Queste onde acustiche vengono poi riflesse con una nuova frequenza, a seconda della velocità vettoriale delle particelle sanguigne, rilevata e rielaborata in modo da ottenere tale misura di velocità.
[modifica] Collegamenti esterni
- (EN) http://archive.ncsa.uiuc.edu/Cyberia/Bima/doppler.html
- http://webphysics.davidson.edu/Applets/Applets.html in fondo pagina c'è un applet java che illustra l'effetto doppler classico e relativistico