סגור (טופולוגיה)
מתוך ויקיפדיה, האנציקלופדיה החופשית
בטופולוגיה, סגור של קבוצה S השייכת למרחב X הוא הקבוצה הסגורה הקטנה ביותר המכילה את S. מבחינה אינטואיטיבית אפשר לחשוב עליו כעל קבוצה המכילה את אברי S ואת כל הנקודות ש"נוגעות" בקבוצה S.
[עריכה] הגדרה פורמלית
יהא מרחב טופולוגי כלשהו, ותהא קבוצה. אם היא קבוצת הקבוצות הסגורות המקיימות , אז הסגור של יסומן או , ויוגדר על ידי:
-
- .
נביא כאן מספר הגדרות אלטרנטיביות ששקולות להגדרה שהבאנו (כלומר, ניתן להוכיח אותן מההגדרה, ואם מקבלים אותם כהגדרה, ניתן להוכיח מהם את ההגדרה המקורית):
- היא קבוצת כל האיברים של שבכל סביבה שלהם קיים איבר של (לא בהכרח שונה מהם).
- , כאשר היא קבוצת כל נקודות ההצטברות של .
- הגדרה באמצעות הפנים של המשלים של הקבוצה: .
[עריכה] תכונות הנוגעות לסגור
נשים לב שרבות מתכונות אלו מזכירות את תכונות הפנים
- כל קבוצה סגורה שווה לסגור שלה: . בפרט הסגור הוא קבוצה סגורה ולכן .
- .
- .
- .
- היא פונקציה רציפה אם ורק אם לכל בתחום שלה מתקיים .
- אם קבוצה קשירה, לכל מתקיים שגם קבוצה קשירה.
- קבוצה במרחב המקיימת נקראת קבוצה צפופה.
- קבוצה במרחב המקיימת נקראת קבוצה דלילה.
טופולוגיה קבוצתית |
מרחב מטרי | מרחב טופולוגי | קבוצה פתוחה | קבוצה סגורה | פנים | סגור | שפה | סביבה | נקודת הצטברות | בסיס | רציפות | הומיאומורפיזם | קשירות | מרחב ספרבילי | אקסיומות ההפרדה | מרחב האוסדורף | מרחב רגולרי | מרחב רגולרי לחלוטין | מרחב נורמלי | פונקציית אוריסון | מרחב מכפלה | משפט טיכונוף | סדרת קושי | קומפקטיות | קומפקטיפיקציה | קומפקטיות מקומית | אקסיומות המנייה | מרחב בייר | טופולוגיה חלשה |
אנליזה מתמטית - אנליזה וקטורית - טופולוגיה - אנליזה מרוכבת - אנליזה פונקציונלית - תורת המידה |