描述集合論
维基百科,自由的百科全书
描述集合論, Descriptive Set Theory, 是數學中集合論的一個分支。在這門學問中,研究的對象是波蘭空間。數學家們將子集合的依照其在拓樸上定義的複雜程度分成Borel 集合、解析集合、投射集合等以及更細的分類,並且依照這些類別研究他們的結構以及性質。
描述集合論的起源可以上溯到 Borel、Baire、Lebesegue 等人的工作。
描述集合論的許多理論和觀念與數學上的其它領域都有關連,包含數學分析、群表現理論、拓樸群論等等。
[编辑] 參考資料
- A. Kechris, Classical Descriptive Set Theory, GTM 156, Springer-Verlag, 1995.
- Y. Moschovakis, Descriptive Set Theory, North-Holland, 1980.