CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Pulscodemodulatie - Wikipedia

Pulscodemodulatie

Pulscodemodulatie (PCM) is een digitale voorstelling van een analoog signaal, waarbij de signaalwaarde op regelmatige tijdstippen bemonsterd wordt, en gekwantiseerd tot een serie waarden in een digitale (om precies te zijn binaire) code. PCM wordt gebruikt in digitale telefoonsystemen en is ook de standaardopslagvorm van digitaal geluid in computers, in verschillende bestandsformaten en op CD.

Voor spraak is de kwantisering gedefinieerd in de ITU-T-aanbeveling G.711, waarin de logaritmische kwantisatie van het spraaksignaal is vastgelegd; hiervoor bestaan 2 varianten: 'A-law' en 'µ-law' (=mu-law).

Een veel gebruikte, afgeleide vorm is de differtial pulse code modulation (DPCM). Bij deze technieken worden niet de samples zelf verzonden, maar de verschillen tussen het huidige en het vorige sample. Het idee achter deze techniek is dat het verschil tussen 2 opeenvolgende samples veel kleiner is dan de grootte van de sample zelf. Doordat te verzenden data dan kleiner is, is ook de benutte bandbreedte kleiner.

Inhoud

[bewerk] Inleiding

Pulscodemodulatie is het technologisch hart van de communicatie in de huidige digitale wereld. Het is een proces waarbij analoge signalen geconverteerd worden naar digitale vorm. Het analoge signaal (bijvoorbeeld spraak van een telefoongesprek) wordt eerst geconverteerd naar een Puls Amplitude Modulatie signaal (PAM) door gebruik te maken van sampelen. Vervolgens kan men dit PAM signaal kwantiseren en encoderen, zodat een digitaal PCM signaal verkregen wordt.

[bewerk] Filteren

De eerste stap om een analoog signaal om te zetten naar een digitaal is het wegfilteren van hogere frequenties uit het signaal. Dit maakt het achteraf makkelijker om het signaal om te zetten. De meeste frequenties van spraak liggen ergens tussen de 200 of 300 Hz en 2700 of 2800 Hz. Zo bekomt men ongeveer een bandbreedte van 3000Hz voor standaard spraak communicatie. Hiervoor hebben ze geen precieze (vaak ook erg duure) filters nodig. Een bandbreedte van 4000Hz wordt hardwarematig bekomen. Deze limiterende band filter wordt gebruikt om aliasing te voorkomen (anti-aliasing). Dit bekomt men wanneer het inkomende analoge spraak signaal wordt ondersampeld, gedefinieerd door het criterium van Nyquist waar geldt: Fs < 2(BW). De sampel frequentie is kleiner dan de hoogste frequentie in het binnenkomend analoge signaal. Dit creëert een overlapping tussen het frequentie spectrum van de sampels en het inkomende analoge signaal. De laagdoorlaat uitgangsfilter die wordt gebruikt om het inkomende signaal terug te recontstrueren, is niet slim genoeg om deze overlapping te reconstrueren. Hierdoor wordt een nieuw signaal opgebouwd dat afwijkt van het origineel ingangssignaal. Het creëren van een vals signaal door overlapping wordt aliasing genoemd.

[bewerk] Bemonsteren

De tweede stap om een analoog signaal om te zetten naar een digitaal is het bemonsteren van het gefilterde ingangssignaal. Bemonsteren houdt in dat de momentele waarde van een analoog signaal wordt gemeten op tijdstippen die een constant tijdsinterval van elkaar verschillen. Dit wordt ook wel pulse amplitude modulation (PAM) genoemd. Deze stap gebruikt het originele analoge signaal om de amplitude van een pulstrein te moduleren, die zelf een constante amplitude en frequentie heeft.

Bemonsteren houdt in dat de momentele waarde van een analoog signaal met een periodiek tijdsinterval wordt gemeten. Een bemonsterd signaal bevat slechts dan alle in het signaal aanwezige informatie, als de bemonsterfrequentie minstens 2 maal hoger ligt dan de hoogste frequentie die voorkomt in het signaal. Dit volgt uit het bemonsteringstheorema van Shannon en Nyquist. Bij toepassen van een dergelijke bemonsterfrequentie, zal het mogelijk zijn het oorspronkelijke signaal te reconstrueren op de plaats van bestemming. Het Nyquist criterium zegt het volgende:

F_s \ge 2 \times BW

Fs = bemonsterfrequentie

BW = bandbreedte van het originele analoge spraaksignaal

Door filtering wordt de bandbreedte bij telefonie aan de zendzijde beperkt tot frequenties tussen 300 en 3400 Hz. Hieruit volgt dat een bemonsteringsfrequentie van 8000 Hz (om de 125 μs) geschikt is.

Afbeelding:sampel.jpg

[bewerk] Kwantiseren en encoderen

Kwantiseren is een proces waarbij elke analoge sampelwaarde wordt geconverteerd naar een discrete waarde dat kan worden toegewezen aan een uniek digitaal codewoord.

Aan elke inkomende sampel wordt een kwantisatie waarde toegekend dat het dichtst bij de amplitude hoogte ligt. Als een sampel geen kwantisatie waarde heeft gekregen waarbij de amplitude hoogte het dichtstbij ligt, ontstaat er een fout in het PCM proces. Deze fout wordt de kwantisatie ruis genoemd. Kwantisatie ruis verlaagt het SNR (signaal/ruis verhouding) van het signaal. Daarom wordt de kwaliteit van het signaal slechter naarmate de kwantisatie ruis toeneemt.

Een manier om kwantisatie ruis te verminderen is door het aantal kwantisatie intervallen te verhogen. Het verschil tussen de ingangs amplitude hoogte en de kwantisatie waarde verminderd als het aantal kwantisatie waarden verhoogt. Men moet hierbij wel rekening houden dat het aantal code woorden dan ook in proportie moeten verhoogd worden met het stijgend aantal kwantisatie waarden. Dit proces neemt problemen met zich mee die te maken hebben met de capaciteit van PCM omdat deze nu meer code woorden moeten behandelen.

SNR is de factor met de meeste invloed op de kwaliteit van het signaal bij uniforme kwantisatie. Uniforme kwantisatie maakt gebruik van gelijke kwantisatie niveaus over het gehele dynamische bereik van een inkomend analoog signaal. Hierdoor hebben signalen met lage amplitude een kleine SNR en die met een hoge amlitude een hoge SNR. Aangezien de meeste spraaksignalen zich in het lage amplitude gedeelte bevinden, is het bij het digitaliseren niet zo efficient dat signalen met een hoge amplitude van betere kwaliteit zijn. Om de kwaliteit van het signaal bij lagere amplitudes te verbeteren maakt men gebruik van niet-lineaire kwantisatie.

[bewerk] Niet-lineaire kwantisatie

Bij niet-lineaire kwantisatie wordt een bemonsterd analoog signaal gecomprimeerd door een logaritmische transformatie. Bij de zogenaamde A-wet wordt deze transformatie segmentsgewijs gedefinieerd (in het amplitudedomein). Binnen elk segment wordt dan gekwantiseerd en geëncodeerd door gebruik te maken van lineaire kwantisatie. De compressie is logaritmisch: de compressie is 'krachtiger' als het signaalniveau hoger is. De signalen met grote amplitude worden dus sterker gecomprimeerd dan die met een lage amplitude. Dit leidt ertoe dat de kwantisatieruis toeneemt naarmate het signaalniveau groter wordt. De signaal-ruisverhouding (SNR) blijft hierbij echter constant. De ITU-T standaarden voor het op deze wijze kwantiseren (en coderen) spraaksignalen worden de A-wet en de μ-wet genoemd.

Bij digitaal spraaktransport met behulp van G.711 zijn PAM signalen bijvoorbeeld gekwantiseerd door gebruik te maken van een 13-segment compressie karakteristiek, ook wel bekend als de A-wet (A-law). Deze wordt vastgelegd door de volgende formule:

y=\frac{{(1+ln Ax)}}{(1+ln A)} waarbij A = 87,6

x=genormaliseerde compressor ingangsspanning

y=genormaliseerde compressor uitgangsspanning


Deze karakteristiek is vastgelegd door 7 verschillende segmenten van verschillende groottes voor de positieve en negatieve helften, waarbij de 2 segmenten rond het nulpunt feitelijk samen 1 segment vormen. Voor de kwantisatie is elk segment verdeeld in lineaire stappen; de segmenten rond het nulpunt hebben 32 stappen en de rest heeft er 16.

Dit geeft een niet-lineaire kwantisering van het signaal als resultaat, met een nuttig effect op de signaal-ruisverhouding.

De meeste informatie van de menselijke stem bevindt zich bij de lage amplitudes. Het segment rond het nulpunt bedekt 1/64 van het amplitude-bereik en is verdeeld in 32 stappen. De bovenste helft van het dynamische bereik van de ingangssignalen wordt bedekt door de laatste 16 segmenten van de karakteristiek.

Met 128 kwantisatieniveaus voor de positieve en negatieve amplitudes, wat een totaal van 256 niveaus oplevert, heeft men 8 bits nodig. De meest significante bit (met de hoogste waarde) is het tekenbit en heeft de waarde 1 voor positieve waarden en 0 voor negatieve waarden. De volgende 3 bits worden gebruikt voor de aanduiding van het segment en de laatste 4 voor de 16 stappen binnen elk segment.

sampel karakteristiek

[bewerk] Zie ook

 
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com