Limit
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Dalam matematika, konsep limit digunakan untuk menjelaskan sifat dari suatu fungsi, saat argumen mendekati ke suatu titik, atau tak hingga; atau sifat dari suatu barisan saat indeks mendekati tak hingga. Limit dipakai dalam kalkulus (dan cabang lainnya dari analisis matematika) untuk mencari turunan dan kekontinyuan.
Dalam pelajaran matematika, limit biasanya mulai dipelajari saat pengenalan terhadap kalkulus, dan untuk memahami konsep limit secara menyeluruh bukan sesuatu yang mudah.
[sunting] Limit sebuah fungsi
Jika f(x) adalah fungsi real dan c adalah bilangan real, maka:
berarti f(x) dapat dibuat agar mempunyai nilai sedekat mungkin dengan L dengan cara membuat nilai x dekat dengan c. Dalam contoh ini, "limit dari f(x), bila x mendekati c, adalah L". Perlu diingat bahwa kalimat sebelumnya berlaku, meskipun f(c) L. Bahkan, fungsi f(x) tidak perlu terdefinisikan pada titik c. Kedua contoh dibawah ini menggambarkan sifat ini.
Sebagai contoh, pada saat x mendekati 2. Dalam contoh ini, f(x) mempunyai definisi yang jelas pada titik 2 dan nilainya sama dengan limitnya, yaitu 0.4:
f(1.9) | f(1.99) | f(1.999) | f(2) | f(2.001) | f(2.01) | f(2.1) |
0.4121 | 0.4012 | 0.4001 | 0.4 | 0.3998 | 0.3988 | 0.3882 |
Semakin x mendekati 2, nilai f(x) mendekati 0.4, dan karena itu . Dalam kasus dimana , f disebut kontinyu pada x = c. Namun, kasus ini tidak selalu berlaku. Sebagai contoh,
Limit g(x) pada saat x mendekat 2 adalah 0.4 (sama seperti f(x)), namun ; g tidak kontinyu pada titik x = 2.
Atau, bisa diambil contoh dimana f(x) tidak terdefinisikan pada titik x = c.
Dalam contoh ini, pada saat x mendekati 1, f(x) tidak terdefinisikan pada titik x = 1 namun limitnya samadengan 2, karena makin x mendekati 1, f(x) makin mendekati 2:
f(0.9) | f(0.99) | f(0.999) | f(1.0) | f(1.001) | f(1.01) | f(1.1) |
1.95 | 1.99 | 1.999 | undef | 2.001 | 2.010 | 2.10 |
Jadi, x dapat dibuat sedekat mungkin dengan 1, asal bukan persis sama dengan 1, jadi limit dari f(x) adalah 2.
[sunting] Definisi formal
Sebuah limit didefinisikan secara formal sebagai berikut: Bila f adalah fungsi yang terdefinisikan pada sebuah interval terbuka yang mengandung titik c (dengan kemungkinan pengecualian pada titik c) dan L adalah bilangan real, maka
berarti bahwa untuk setiap terdapat yang untuk semua x dimana , berlaku .
[sunting] Limit sebuah fungsi pada titik tak terhingga
Konsep yang berkaitan dengan limit saat x mendekati sebuah angka adalah konsep limit saat x mendekati tak terhingga, baik positif atau negatif. Ini bukan berarti selisih antara x dan tak terhingga menjadi kecil, karena tak terhingga bukanlah sebuah bilangan. Namun, artinya adalah x menjadi sangat besar (untuk tak terhingga) atau sangat kecil (untuk tak terhingga negatif).
Sebagai contoh, lihat .
- f(100) = 1.9802
- f(1000) = 1.9980
- f(10000) = 1.9998
Semakin x membesar, nilai f(x) mendekati 2. Dalam contoh ini, dapat dikatakan bahwa