CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Séquençage de l'ADN - Wikipédia

Séquençage de l'ADN

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

Le séquençage de l'ADN, consiste à déterminer l'ordre d'enchaînement des nucléotides d’un fragment d’ADN donné. Actuellement, la plupart des séquençages d’ADN sont réalisés par la méthode de Sanger décrite ci-dessous. Cette technique utilise la réaction de polymérisation de l’ADN à l'aide d'une ADN polymérase et des didésoxyribonucléotides (ddNTP).

La séquence d’ADN contient l’information nécessaire aux êtres vivants pour survivre et se reproduire. Déterminer cette séquence est donc utile aussi bien pour les recherches visant à savoir comment vivent les organismes que pour des sujets appliqués. En médecine, elle peut être utilisée pour identifier, diagnostiquer et potentiellement trouver des traitements à des maladies génétiques. En Biologie l'étude des séquences d'ADN est devenu un outil important pour la classification des espèces.

Sommaire

[modifier] Historique

Le séquençage de l'ADN a été inventé dans la deuxième moitié des années 1970. Deux méthodes ont été développées indépendamment, l'une par l'équipe de Walter Gilbert, aux Etats-Unis, et l'autre par celle de Frederick Sanger, en Grande-Bretagne. Ces deux méthodes sont fondées sur des principes diamétralement opposés : l'approche de Sanger est une méthode par synthèse enzymatique sélective, tandis que celle de Maxam et Gilbert est une méthode par dégradation chimique sélective. Pour cette découverte, Gilbert et Sanger ont été récompensés par le prix Nobel de chimie en 1980.

Initialement, la méthode de Sanger nécessitait de disposer d'un ADN simple brin qui servait de matrice pour la synthèse enzymatique du brin complémentaire. Pour cette raison, le premier organisme biologique dont le génome a été séquencé en 1977 est le virus bactériophage φX174. Ce virus a la propriété d'avoir un génome constitué d'ADN simple brin qui est encapsulé dans la particule virale.

Au cours des 25 dernières années, la méthode de Sanger a été largement développée grâce à plusieurs avancées technologiques importantes :

  • La mise au point de vecteurs de séquençage adaptés, comme le phage M13 développé par Joachim Messing au début des années 1980.
  • Le développement de la synthèse chimique automatisée des oligonucléotides qui sont utilisés comme amorces dans la synthèse.
  • L'introduction de traceurs fluorescents à la place des marqueurs radioactifs utilisés initialement. Ce progrès à permis de sortir le séquençage des pièces confinées, réservées à l'usage des radioisotopes.
  • L'adaptation de la technique PCR pour le séquençage.
  • L'utilisation de séquenceurs automatiques de gènes
  • L'utilisation de l'électrophorèse capillaire pour la séparation et l'analyse

La méthode de Maxam et Gilbert nécessite des réactifs chimiques toxiques et reste limitée quant à la taille des fragments d'ADN qu'elle permet d'analyser (<250 nuclétoides). Moins facile à robotiser, son usage est devenu aujourd'hui confidentiel.

[modifier] Méthode de Sanger

 Structure du dATP (haut) et du ddATP (bas). Dans le ddATP, le groupement 3'-OH (en jaune) est remplacé par un hydrogène. Cette modification enpêche la poursuite de la synthèse de l'ADN qui continue normalement sur le 3-OH
Structure du dATP (haut) et du ddATP (bas). Dans le ddATP, le groupement 3'-OH (en jaune) est remplacé par un hydrogène. Cette modification enpêche la poursuite de la synthèse de l'ADN qui continue normalement sur le 3-OH

Le principe de cette méthode consiste à initier la polymérisation de l’ADN à l'aide d'un petit oligonucléotide (amorce) complémentaire à une partie du fragment d’ADN à séquencer. L’élongation de l’amorce est réalisée par le fragment de Klenow (une ADN polymérase I dépourvue d’activité exonucléase 5’->3’) et maintenant par des ADN polymérases thermostables, celles qui sont utilisées pour la PCR. Les quatre désoxyribonucléotides (dATP, dCTP, dGTP, dTTP) sont ajoutés, ainsi qu’en faible concentration de l'un des quatre didésoxynucléotides (ddATP, ddCTP, ddGTP ou ddTTP).

 Mécanisme de polymérisation de l'ADN. La matrice (en blanc) est recopiée par la polymérase qui allonge le brin complémentaire à partir de l'amorce
Mécanisme de polymérisation de l'ADN. La matrice (en blanc) est recopiée par la polymérase qui allonge le brin complémentaire à partir de l'amorce

Ces didésoxynucléotides, agissent comme des « poisons » terminateurs de chaîne : une fois incorporés dansl le nouveau brin synthétisé, ils empêchent la poursuite de l’élongation. Cette terminaison se fait spécifiquement au niveau des nucléotides correspondant au didésoxyriboucléotide incorporé dans la réaction. Pour le séquençage complet d'un même fragment d'ADN, on répète cette réaction quatre fois en parallèle, avec les quatre didésoxyribonucléotides différents.

Par exemple, dans la réaction où on a ajouté du ddGTP, la synthèse s'arrête au niveau des G. Le mélange réactionnel contenant, à la fois du dGTP et un peu de ddGTP, la terminaison se fait de manière statistique suivant que l'ADN polymérase utilise l'un ou l'autre de ces nucléotides. Il en résulte un mélange de fragments d’ADN de tailles croissantes, qui se terminent tous au niveau d'un des G dans la séquence. Ces fragments sont ensuite séparés par électrophorèse sur un gel de polyacrylamide, ce qui permet ainsi de repérer la position des G dans la séquence.

 Principe du séquençage par la méthode de Sanger. les didésoxyribonucléotide (ici, le ddGTP, en jaune) sont incorporés mais bloquent statistiquement l'allongement de la chaîne là où les G sont normalement incorporés. Un traceur fluorescent (en vert clair) est attaché à l'extrémité de l'amorce de polymérisation et permet de détecter les fragments d'ADN synthétisé
Principe du séquençage par la méthode de Sanger. les didésoxyribonucléotide (ici, le ddGTP, en jaune) sont incorporés mais bloquent statistiquement l'allongement de la chaîne là où les G sont normalement incorporés. Un traceur fluorescent (en vert clair) est attaché à l'extrémité de l'amorce de polymérisation et permet de détecter les fragments d'ADN synthétisé


La détection des fragments ainsi synthétisés se fait en incorporant un traceur dans l'ADN synthétisé. Initialement ce traceur était radioactif, aujourd'hui, on utilise des traceurs fluorescents, attachés soit à l'oligonucléotide, soit au didésoxyribonucléotide.

[modifier] Méthode de Maxam et Gilbert

Cette méthode est basée sur une dégradation chimique de l'ADN et utilise les réactivités différentes des quatres bases A, T, G et C, pour réaliser des coupures sélectives. En reconstituant l'ordre des coupure, on peut remonter à la séquence des nucléotides de l'ADN correspondant. On peut décomposer ce séquençage chimique en six étapes successives :

  • Marquage : Les extrémités des deux brins d'ADN à séquencer sont marquepar un traceur radioactif (phosphore 32). Cette réactioon se fait en général au moyen d'ATP radioactif et de polynucléotide kinase
  • Isolement du fragment d'ADN à séquencer. Celui-ci est séparé au moyen d'une électrophorèse sur un gel de polyacrylamide. Le fragment d'ADN est découpé du gel et récupéré par diffusion
  • Séparation de brins. Les deux brins de chaque fragment d'ADN sont séparés par dénaturation thermique, puis séparés et purifiés par une nouvelle électrophorèse.
  • Modifications chimiques spécifiques. Les ADN simple-brin sont soumis à des réactions chimiques spécifiques des différents type de base. Gilbert a mis au point plusieurs types de réactions spécifiques, effectuées en parallèle sur une fraction de chaque brin d'ADN marqué. Par exemple une pour les G (alkylation par le diméthyle sulfate), une pour G et les A (dépurination), une pour les C et une pour les C et les T (hydrolyse alkaline). Ces différentes réactions sont effectuées dans des conditions très ménagées, de sorte qu'en moyenne chaque molécule d'ADN ne porte que zéro ou une modification.
  • Coupure. Après ces réactions, l'ADN est clivé au niveau de la modification par réaction avec une base, la pipéridine.
  • Analyse. Pour chaque fragment, les produits des différentes réactions sont séparés par électrophorèse et analysés pour reconstituer la séquence de l'ADN. Cette analyse est analogue à celle que l'on effectue pour la methode de Sanger.

[modifier] Autres méthodes

  • "Shot gun"
  • Utilisation des puces à ADN
  • ....

[modifier] Voir aussi

[modifier] Liens externes



Portail de la biochimie – Accédez aux articles de Wikipédia concernant la biochimie.
Portail de la biologie cellulaire et moléculaire – Accédez aux articles de Wikipédia concernant la biologie cellulaire et moléculaire.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com