CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Paradoxe des anniversaires - Wikipédia

Paradoxe des anniversaires

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

Le paradoxe des anniversaires, dû à Richard von Mises, est à l'origine, une estimation probabiliste du nombre de personnes que l'on doit réunir pour avoir une chance sur deux que deux personnes de ce groupe aient leur anniversaire le même jour. Il se trouve que ce nombre est 23, ce qui choque un peu l'intuition. À partir d'un groupe de 57 personnes, la probabilité est supérieure à 99 %.

Cependant, il ne s'agit pas d'un paradoxe dans le sens de contradiction logique ; c'est un paradoxe, dans le sens où c'est une vérité mathématique qui contredit l'intuition : la plupart des gens estiment que cette probabilité est très inférieure à 50 %, parce qu'elles confondent avec la probabilité qu'une personne donnée fête son anniversaire le même jour qu'une autre.

Les gens pensent en général à la probabilité que 2 personnes soient nées en même temps un jour donné, probabilité qui est en effet très faible.

Sommaire

[modifier] Généralisation

Ce paradoxe des anniversaires se généralise bien évidemment à la situation plus abstraite que l'on peut énoncer sous la forme :

Soit E un ensemble fini. La probabilité p(n) que, parmi n éléments de E, chaque élément étant tiré uniformement dans tout l'ensemble E, deux éléments au moins soient identiques vaut :

p(n)=1 - \frac{|E|!}{(|E|-n)!} \cdot \frac{1}{|E|^n}

où la notation | E | désigne le cardinal de l'ensemble E.

Une valeur approchée est donnée par

p(n)\approx 1 - e^{-\frac{n^2}{2\cdot |E|}}

et une valeur de n en fonction de p par

n(p)\approx \sqrt {2\cdot |E| \ln\left(\frac{1}{1-p}\right)}

[modifier] Démonstration

Nous donnons une preuve pour le cas d'origine, avec des jours d'anniversaires, mais cela se transpose simplement au cas de la généralisation énoncé.

Le plus simple pour obtenir le résultat annoncé est de calculer la probabilité que chaque personne ait un jour anniversaire différent de celui des autres. On va procéder par dénombrement, c'est-à-dire, que nous allons compter le nombre de cas où n personnes ont des jours d'anniversaires différents et nous diviserons par le nombre de possibilités. Il y a n personnes, pour chacune il y a 365 jours possibles, donc au total si on ne se fixe aucune contrainte, il a 365n possibilités. Si maintenant on veut des jours differents, nous obtenons un arrangement de n parmi 365, soit :A^n_{365}=(365-0)(365-1)...(365-n+1)=\frac{365!}{(365-n)!}.

On a donc

\overline{p}(n)= \frac{365!}{(365-n)!} \cdot \frac{1}{365^n}

Or, l'évènement « un jour anniversaire différent par personne » est le complémentaire de « au moins deux identiques ». Par conséquent la probabilité recherchée est p(n)=1-\overline{p}(n).


En faisant l'application numérique, on trouve 50,72 % pour 23 personnes … Le calcul exposé néglige la date du 29 février dont la prise en compte changerait très peu le pourcentage indiqué.

n p(n)
10 12%
20 41%
30 70%
50 97%
100 99.99996%
200 99.9999999999999999999999999998%
300 \left(1 - \left(7 .10^{-73}\right)\right)\cdot100\%
350 \left(1 - \left(3 . 10^{-131}\right)\right)\cdot100\%
≥366 100% (par le Théorème des tiroirs)

[modifier] Approximation

[modifier] p(n)

La probabilité \overline{p}(n)=1-p(n) peut se réécrire sous la forme

\overline{p}(n)=\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right)...\left(1-\frac{i}{365}\right)...\left(1-\frac{n-1}{365}\right)

Or, on a le développement limité ex = 1 + x + o(x) pour x voisin de 0. Cela conduit à l'approximation :

\overline{p}(n)\approx \prod_{i=0}^{n-1}e^{-\frac{i}{365}}
\overline{p}(n)\approx e^{-\frac{ \sum_{i=0}^{n-1} i}{365}}

Or, la somme des entiers de 0 à n − 1 vaut (n − 1)n / 2, ce qui donne finalement :

\overline{p}(n)\approx e^{-\frac{ n^2}{2\cdot 365}}

En revenant à p(n) :

p(n)\approx 1- e^{-\frac{ n^2}{2\cdot 365}}

[modifier] n(p)

L'approximation de p(n) permet d'obtenir simplement une approximation du nombre de personnes nécessaire pour avoir une probabilité donnée p d'avoir au moins deux personnes avec le même jour d'anniversaire. On obtient ainsi

n(p)\approx \sqrt{2\cdot 365\ln\left(\frac{1}{1-p}\right)}

[modifier] Quelques valeurs numériques

Le tableau ci-dessous indique, pour une probabilité p, l'approximation n(p), puis, sur la même ligne, l'approximation de la probabilité pour l'entier inferieur ou égal à n(p) (noté \lfloor n\rfloor) et celle de probabilité pour l'entier supérieur ou égal à n(p) (noté \lceil n\rceil). Normalement, la probabilité p fixé au depart doit être comprise entre ces deux valeurs. Les entrées ne vérifiant pas cette condition sont signalées en couleur.

p n \lfloor n\rfloor p(\lfloor n\rfloor) \lceil n\rceil p(\lceil n\rceil)
0.01
2.70864
2 0.00274 3
0.00820
0.05 6.11916 6 0.04046 7 0.05624
0.1
8.77002
8 0.07434 9
0.09462
0.2
12.76302
12 0.16702 13
0.19441
0.3 16.13607 16 0.28360 17 0.31501
0.5 22.49439 22 0.47570 23 0.50730
0.7 29.64625 29 0.68097 30 0.70632
0.8 34.27666 34 0.79532 35 0.81438
0.9 40.99862 40 0.89123 41 0.90315
0.95 46.76414 46 0.94825 47 0.95477
0.99
57.98081
57
0.99012
58 0.99166

[modifier] Applications

Le paradoxe des anniversaires est utilisé en cryptographie pour élaborer des attaques sur les fonctions de hachage. Une des contraintes imposées sur ces fonctions, pour une utilisation cryptographique, est de produire peu de collisions, autrement dit, de rarement prendre la même valeur sur des entrées différentes.

Le paradoxe des anniversaires donne une borne sur le nombre moyen d'éléments nécéssaires pour avoir une collision avec une probabilité p=\frac{1}{2}, à savoir essentiellement la racine carrée du nombre de valeurs possibles pour la fonction de hachage, sous l'hypothèse que cette fonction est uniformement distribuée sur ses valeurs d'arrivées.

Plus concrètement, si une fonction de hachage a une sortie de N bits alors l'ensemble d'arrivé possède 2N éléments et il faut environ |2N/2 hachés d'éléments distincts pour produire une collision avec 50% de chance ; les sorties de la fonction pouvant être comparées à des personnes avec des anniversaires se répartissant sur 2N valeurs.

[modifier] Liens


Mesures de sécurité cryptographique
Cryptographie : Preuve de sécurité | Sécurité inconditionnelle | IND-CPA | IND-CCA | Kerckhoffs | Malléabilité | Sécurité calculatoire | Hypothèses calculatoires | Confusion et diffusion
Cryptanalyse de base : Biais statistique | Corrélation | Dictionnaire | Force brute | Fréquence | Indice de coïncidence | Interpolation | Mot probable
Cryptanalyse par canal auxiliaire : Canaux auxiliaires : Acoustique | Consommation | Émanations EM | Faute | Sondage | Temporel
Cryptanalyse ciblée : Clé apparentée | Clé faible | EFF | Enigma | Glissement | Intégrale | Linéaire / Différentielle / Différentielle impossible / Différentielle-linéaire / Boomerang | Modes opératoires | Modulo n | Quadratique | Rectangle | Rencontre au milieu | Vigenère | χ²
Systèmes asymétriques : Clé apparentée | Clé faible | Homme au milieu | Sécurité sémantique
Fonctions de hashage : Effet avalanche | Linéaire / Différentielle | Paradoxe des anniversaires | Pseudo-collision
Autres : Anonymat | Confidentialité | Intégrité | Sécurité par l'obscurité
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com