Privacy Policy Cookie Policy Terms and Conditions Gaussian measure - Wikipedia, the free encyclopedia

Gaussian measure

From Wikipedia, the free encyclopedia

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space \mathbb{R}^{n}, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss.

Contents

[edit] Definitions

Let n \in \mathbb{N} and let \lambda^{n} : \mathrm{Borel} (\mathbb{R}^{n})_{0} \to [0, + \infty] denote Lebesgue measure. (Technical point: the subscript "0" indicates that Lebesgue measure is defined on the completion of the Borel sigma algebra.) Then the standard Gaussian measure \gamma^{n} : \mathrm{Borel} (\mathbb{R}^{n})_{0} \to [0, + \infty] is defined by

\gamma^{n} (A) := \frac{1}{\sqrt{2 \pi}^{n}} \int_{A} \exp \left( - \frac{1}{2} \| x \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x).

In terms of the Radon-Nikodym derivative,

\frac{\mathrm{d} \gamma^{n}}{\mathrm{d} \lambda^{n}} (x) = \exp \left( - \frac{1}{2} \| x \|_{\mathbb{R}^{n}}^{2} \right).

More generally, the Gaussian measure with mean \mu \in \mathbb{R}^{n} and variance σ2 > 0 is given by

\gamma_{\mu, \sigma^{2}}^{n} (A) := \frac{1}{\sqrt{2 \pi \sigma^{2}}^{n}} \int_{A} \exp \left( - \frac{1}{2 \sigma^{2}} \| x - \mu \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x).

Gaussian measures with mean μ = 0 are known as centred Gaussian measures.

The Dirac measure δμ is the weak limit of \gamma_{\mu, \sigma^{2}}^{n} as \sigma \to 0, and is considered to be a degenerate Gaussian measure; in contrast, Gaussian measures with finite non-zero variance are called non-degenerate Gaussian measures.

[edit] Properties of Gaussian measure

The standard Gaussian measure γn on \mathbb{R}^{n}

\gamma^{n} (B) = \sup \{ \gamma^{n} (K) | K \subseteq B \mathrm{\,is\,compact} \},

so Gaussian measure is a Radon measure;

\frac{\mathrm{d} (T_{h})_{*} (\gamma^{n})}{\mathrm{d} \gamma^{n}} (x) = \exp \left( \langle h, x \rangle_{\mathbb{R}^{n}} - \frac{1}{2} \| h \|_{\mathbb{R}^{2}}^{2} \right),

where the derivative on the left-hand side is the Radon-Nikodym derivative, and (Th) *n) is the push forward of standard Gaussian measure by the translation map T_{h} : x \mapsto x + h;

Z \sim \mathrm{Normal} (\mu, \sigma^{2}) \implies \mathbb{P} (Z \in A) = \gamma_{\mu, \sigma^{2}}^{n} (A).

[edit] Gaussian measures on infinte-dimensional spaces

It can be shown that there is no analogue of Lebesgue measure on an infinite-dimensional vector space. Even so, it is possible the define Gaussian measures on infinte-dimensional spaces, the main example being the abstract Wiener space construction. A Borel measure μ on a separable Banach space E is said to be a non-degenerate Gaussian measure if, for every linear functional \ell \in E^{*} except \ell = 0, the push forward measure \ell_{*} (\mu) is a non-degenerate Gaussian measure on \mathbb{R} in the sense defined above.

For example, classical Wiener measure on the space of continuous paths is a Gaussian measure.

[edit] See also

THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu