Privacy Policy Cookie Policy Terms and Conditions Absolute continuity - Wikipedia, the free encyclopedia

Absolute continuity

From Wikipedia, the free encyclopedia

In mathematics, a real-valued function f of a real variable is absolutely continuous on a specified finite or infinite interval if for every positive number ε, no matter how small, there is a positive number δ small enough so that whenever a sequence of pairwise disjoint sub-intervals [xk, yk], k = 1, ..., n satisfies

\sum_{k=1}^n \left|y_k-x_k\right|<\delta

then

\sum_{k=1}^n\left|f(y_k)-f(x_k)\right|<\varepsilon.

Every absolutely continuous function is uniformly continuous and, therefore, continuous. Every Lipschitz-continuous function is absolutely continuous.

The Cantor function is continuous everywhere but not absolutely continuous; as is the function

f(x) = \begin{cases} 0, & \mbox{if }x =0 \\ x \sin(1/x), & \mbox{if } x \neq 0 \end{cases}

on a finite interval containing the origin, or the function f(x) = x2 on an infinite interval.

  • If f is absolutely continuous on a finite interval [a,b], then it is of bounded variation on [a,b].
  • If f is absolutely continuous on the interval [a,b], then it has the Luzin N property (that is, for any L\subseteq [a,b] that λ(L) = 0, it holds that λ(f(L)) = 0, where λ stands for the Lebesgue measure).
  • If f is absolutely continuous, then f has a derivative almost everywhere.
  • If f is continuous, is of bounded variation and has the Luzin N property, then it is absolutely continuous.

Contents

[edit] Absolute continuity of measures

If μ and ν are measures on the same measure space (or, more precisely, on the same sigma-algebra) then μ is absolutely continuous with respect to ν if μ(A) = 0 for every set A for which ν(A) = 0. It is written as "μ << ν". In symbols:

\mu \ll \nu \iff \left( \nu(A) = 0 \implies \mu (A) = 0 \right).

Absolute continuity of measures is reflexive and transitive, but is not antisymmetric, so it is a preorder rather than a partial order. Instead, if μ << ν and ν << μ, the measures μ and ν are said to be equivalent. Thus absolute continuity induces a partial ordering of such equivalence classes.

If μ is a signed or complex measure, it is said that μ is absolutely continuous with respect to ν if its variation |μ| satisfies |μ| << ν; equivalently, if every set A for which ν(A) = 0 is μ-null.

The Radon-Nikodym theorem states that if μ is absolutely continuous with respect to ν, and ν is σ-finite, then μ has a density, or "Radon-Nikodym derivative", with respect to ν, which implies that there exists a ν-measurable function f taking values in [0,∞], denoted by f = dμ/dν, such that for any ν-measurable set A we have

\mu(A)=\int_A f\,d\nu.

[edit] The connection between absolute continuity of real functions and absolute continuity of measures

A measure μ on Borel subsets of the real line is absolutely continuous with respect to Lebesgue measure if and only if the point function

F(x)=\mu((-\infty,x])

is locally an absolutely continuous real function. In other words, a function is locally absolutely continuous if and only if its distributional derivative is a measure that is absolutely continuous with respect to the Lebesgue measure.

Example. The Heaviside step function on the real line,

H(x) := \left\{ \begin{matrix} 0, & x < 0; \\ 1, & x \geq 0; \end{matrix} \right.

has the Dirac delta distribution δ0 as its distributional derivative. This is a measure on the real line, a "point mass" at 0. However, the Dirac measure δ0 is not absolutely continuous with respect to Lebesgue measure λ, nor is λ absolutely continuous with respect to δ0: λ({0}) = 0 but δ0({0}) = 1; if U is any open set not containing 0, then λ(U) > 0 but δ0(U) = 0.

[edit] See also

[edit] Reference

In other languages
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu