Privacy Policy Cookie Policy Terms and Conditions Multivariate Verteilung - Wikipedia

Multivariate Verteilung

aus Wikipedia, der freien Enzyklopädie

Die gemeinsame Wahrscheinlichkeitsverteilung mehrerer Zufallsvariablen nennt man multivariate Verteilung oder auch mehrdimensionale Verteilung.

Inhaltsverzeichnis

[Bearbeiten] Formale Darstellung

Um Verwechslungen zu vermeiden, werden skalare Zufallsvariablen groß geschrieben, Zufallsvektoren jedoch klein. Matrizen und Vektoren werden unterstrichen.

Man betrachtet p Zufallsvariablen X_j\ (j=1, \ldots, p), jeweils mit einem Erwartungswert E(Xj) und der Varianz V(Xj). Die Zufallsvariablen sind zudem paarweise korreliert mit der Kovarianz \operatorname{Cov}(X_j,X_k)\ (j,k=1,\ldots,p; j\ne k).

Man interessiert sich für die gemeinsame Wahrscheinlichkeit, dass alle Xj höchstens gleich einer jeweiligen Konstanten xj sind, also

P(X_1 \le x_1;X_2 \le x_2;\ldots; X_p \le x_p) = F_X(x_1;x_2;\ldots, x_p).

Multivariate Zufallsvariablen werden i.A. in Matrixform dargestellt. Man fasst die Zufallsvariablen in einem (p\times 1)-Zufallsvektor \underline x zusammen:

\underline x =   \begin{pmatrix}     X_1 \\    X_2 \\   \vdots\\     X_p   \end{pmatrix} .

Für die obige gemeinsame Wahrscheinlichkeit erhält man

F_x(\underline x)=F_X   \begin{pmatrix}     x_1 \\    x_2 \\   \vdots\\     x_p   \end{pmatrix}.

Die Erwartungswerte befinden sich im (px1)-Erwartungswertvektor

E(\underline{x})=   \begin{pmatrix}     E(X_1) \\     E(X_2) \\   \vdots\\     E(X_p)   \end{pmatrix} .

Die Varianzen werden zusammen mit den Kovarianzen in der (pxp)-Kovarianzmatrix \underline \Sigma aufgeführt:

\underline \Sigma=   \begin{pmatrix}     V(X_1)        & {\rm Cov}(X_1,X_2)     & {\rm Cov}(X_1,X_3)     & \ldots & {\rm Cov}(X_1,X_{p-1}) & {\rm Cov}(X_1,X_p) \\     {\rm Cov}(X_2,X_1)     & V(X_2)        & {\rm Cov}(X_2,X_3)     & \ldots & {\rm Cov}(X_2,X_{p-1}) & {\rm Cov}(X_2,X_p) \\     {\rm Cov}(X_3,X_1)     & {\rm Cov}(X_3,X_2)     & V(X_3)        & \ldots & {\rm Cov}(X_3,X_{p-1}) & {\rm Cov}(X_3,X_p) \\     \vdots        & \vdots        & \vdots        & \ddots & \vdots        & \vdots \\     {\rm Cov}(X_{p-1},X_1) & {\rm Cov}(X_{p-1},X_2) & {\rm Cov}(X_{p-1},X_3) & \ldots & V(X_{p-1})    & {\rm Cov}(X_{p-1},X_p) \\     {\rm Cov}(X_p,X_1)     & {\rm Cov}(X_p,X_2)     & {\rm Cov}(X_p,X_3)     & \ldots & {\rm Cov}(X_p,X_{p-1}) & V(X_p)  \\  \end{pmatrix}

Man sieht, dass Σ symmetrisch ist. Auf der Hauptdiagonalen sind die Varianzen angeordnet. x ist also verteilt mit dem Erwartungswertvektor E(x) und der Kovarianzmatrix Σ.

Die Umformung zu den Korrelationskoeffizienten

\rho_{jk}={{\rm Cov}(X_j,X_k) \over\ \sqrt{V(X_j) \cdot V(X_k)}}

ergibt die Korrelationsmatrix

\underline R=   \begin{pmatrix}     1         & \rho_{12} & \rho_{13} & \ldots & \rho_{1p} \\     \rho_{21} & 1         & \rho_{23} & \ldots & \rho_{2p} \\     \rho_{31} & \rho_{32} & 1         & \ldots & \rho_{3p} \\     \vdots    & \vdots    & \vdots    & \ddots & \vdots \\     \rho_{p1} & \rho_{p2} & \rho_{p3} & \ldots & 1\\   \end{pmatrix}

Gemeinsame Wahrscheinlichkeiten sind häufig schwierig zu berechnen, vor allem, wenn schon die Einzelwahrscheinlichkeiten nicht analytisch bestimmbar sind. Man behilft sich dann gegebenenfalls mit Abschätzungen. Vor allem können die Auswirkungen der Kovarianz auf die Verteilung in der Regel nicht abgesehen werden.

Sind die Zufallsvariablen stochastisch unabhängig, ist die gemeinsame Wahrscheinlichkeit gleich dem Produkt der entsprechenden Einzelwahrscheinlichkeiten.

F_x(\underline x)=\underline F_X   \begin{pmatrix}     x_1 \\    x_2 \\ \vdots\\     x_p   \end{pmatrix}=F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot  ... \cdot F_{X_p}(x_p).

[Bearbeiten] Ausgewählte multivariate Verteilungen

Von Bedeutung sind vor allem die

die multivariaten Verfahren zu Grunde liegen. Meistens ist es möglich, mittels einer linearen Transformation den Zufallsvektor in ein Skalar umzuwandeln, das dann univariat verteilt ist und so als Testprüfgröße fungiert.

[Bearbeiten] Die multivariate Normalverteilung

Dichte der zweidimensionalen Standardnormalverteilung
vergrößern
Dichte der zweidimensionalen Standardnormalverteilung

Gegeben ist ein Vektor x aus p gemeinsam normalverteilten Zufallsvariablen mit dem Erwartungswertvektor μ und der Kovarianzmatrix Σ mit Determinante |\underline \Sigma|. Die gemeinsame Dichtefunktion der Vektorkomponenten ist gegeben durch

f_x(\underline{x})=(2\pi)^{-{p\over2}}|\underline \Sigma|^{-{1 \over 2}} {\rm exp}(-{1 \over 2}(\underline x-\underline \mu)^T\underline \Sigma^{-1}(\underline x-\underline \mu)).

Es ist also

\underline x\sim N_p(\underline \mu;\underline \Sigma).

Die Kovarianzmatrix Σ ist i. a. positiv definit. Die Werte der Verteilungsfunktion F müssen numerisch ermittelt werden.

Die multivariate Normalverteilung hat spezielle Eigenschaften:

  • Sind die Komponenten des Zufallsvektors x paarweise unkorreliert, sind sie auch stochastisch unabhängig.
  • Die lineare Transformation y = a + Bx mit B als (qxp)-Matrix (q ≤ p) und a als (qx1)-Vektor ist q-dimensional normalverteilt als Nq (a + ; BΣBT).
  • Die lineare Transformation
\underline y=\underline \Sigma^{-{1\over2}}(\underline x-\underline \mu)
standardisiert den Zufallsvektor x. Es ist
\underline Y \sim N_p(\underline 0;\underline 1).
also sind die Komponenten von y stochastisch unabhängig.
  • X kann auch eine singuläre Kovarianzmatrix besitzen. Man spricht dann von einer degenerierten oder singulären multivariaten Normalverteilung.

[Bearbeiten] Beispiel für eine multivariate Normalverteilung

Betrachtet wird eine Apfelbaumplantage mit sehr vielen gleich alten, also vergleichbaren Apfelbäumen. Man interessiert sich für die Merkmale Größe der Apfelbäume, die Zahl der Blätter und die Erträge. Es werden also die Zufallsvariablen definiert:

X1: Höhe eines Baumes [m]; X2 : Ertrag [100 kg]; X3 : Zahl der Blätter [1000 Stück].

Die Variablen sind jeweils normalverteilt wie

X_1 \sim  N(4;1);  X_2 \sim  N(20;100); X_3 \sim  N(20;225);

Die meisten Bäume sind also um 4 ± 1m groß, sehr kleine oder sehr große Bäume sind eher selten. Bei einem großen Baum ist der Ertrag tendenziell größer als bei einem kleinen Baum, aber es gibt natürlich hin und wieder einen großen Baum mit wenig Ertrag. Ertrag und Größe sind korreliert, die Kovarianz beträgt Cov(X1,X2)=9 und der Korrelationskoeffizient ρ12 = 0,9.

Ebenso ist Cov(X1,X3)=12,75 mit dem Korrelationskoeffzienten ρ13 = 0,85, und Cov(X2,X3)=120 mit dem Korrelationskoeffzienten ρ23 = 0,8.

Fasst man die drei Zufallsvariablen im Zufallsvektor x zusammen, ist x multivariat normalverteilt mit

\underline \mu =    \begin{pmatrix}     4 \\    20 \\     20   \end{pmatrix}

und

\underline \Sigma=   \begin{pmatrix}     1&  9 &12,75 \\     9 &100& 120 \\     12,75 &120& 225  \end{pmatrix} .

Die entsprechende Korrelationsmatrix ist

\underline R=   \begin{pmatrix}     1&  0,9 &0,85 \\     0,9 &1& 0,8 \\     0,85 &0,8&1  \end{pmatrix}.

[Bearbeiten] Stichproben bei Multivariaten Verteilungen

In der Realität werden in aller Regel die Verteilungsparameter einer Multivariaten Verteilung nicht bekannt sein. Diese Parameter müssen also geschätzt werden.

Man zieht eine Stichprobe vom Umfang n. Jede Realisation i (i=1,...,n) des Zufallsvektors x könnte man als Punkt in einem p-dimensionalen Hyperraum auffassen. Man erhält so die (nxp)-Datenmatrix X als

\underline X= \begin{pmatrix} x_{11}& x_{12}& \cdots &x_{1j}&\cdots &x_{1p}\\ x_{21}& x_{22}& \cdots &x_{2j}&\cdots &x_{2p}\\ \vdots& & & & &\vdots \\ x_{i1}& x_{i2}& \cdots &x_{ij}&\cdots &x_{ip}\\ \vdots& & & & &\vdots \\ x_{n1}& x_{n2}& \cdots &x_{nj}&\cdots &x_{np} \end{pmatrix} ,

die in jeder Zeile die Koordinaten eines Punktes enthält.

Der Erwartungswertvektor wird geschätzt durch den Mittelwertvektor der p arithmetischen Durchschnitte

\widehat{E(\underline{x})}=\underline{\bar x}=   \begin{pmatrix} \bar x_1\\ \bar x_2\\ \vdots\\ \bar x_j\\ \vdots\\ \bar x_p   \end{pmatrix}

mit den Komponenten

\bar x_j = \frac{1}{n}\sum_{i=1}^n x_{ij}.

Für die Schätzung der Kovarianzmatrix erweist sich die bezüglich der arithmetischen Mittelwerte zentrierte Datenmatrix X* als nützlich. Sie berechnet sich als

\underline X^*=\underline X-\underline l\cdot\underline{\bar x}^T,

mit den Elementen x*ij, wobei l einen (nx1)-Spaltenvektor mit lauter Einsen bedeutet.

Die (pxp)-Kovarianzmatrix hat die geschätzten Komponenten

s_{jk}=\widehat{{\rm Cov}}(X_j,X_k)=\frac{1}{n-1}\sum_{i=1}^n x*_{ij}x*_{ik}.

Sie ergibt sich als

\widehat{\underline \Sigma}=\underline S= \frac{1}{n-1}\underline X^{*T}\underline X^*.

Die Korrelationsmatrix R wird geschätzt durch die paarweisen Korrelationskoeffizienten

r_{jk}= \frac{\sum\limits_{i=1}^n x*_{ij}x*_{ik}} {\sqrt{\sum\limits_{i=1}^n x*_{ij}^2}\sqrt{\sum\limits_{i=1}^n x*_{ik}^2}},

auf ihrer Hauptdiagonalen stehen Einsen.

[Bearbeiten] Beispiel zu Stichproben

Es wurden 10 Apfelbäume zufällig ausgewählt. Die 10 Beobachtungen werden in der Datenmatrix X zusammengefasst:

\underline X= \begin{pmatrix} 3,3&24& 27 \\ 4,9& 41&55\\ 5,9& 46&52 \\ 5,2& 49&54\\ 3,6& 29 &34 \\ 4,2&33& 51 \\ 5,0&42& 43\\ 5,1&35& 54 \\ 6,8&60& 70 \\ 5,0&41&50 \end{pmatrix} .

Die Mittelwerte berechnen sich, wie beispielhaft an \bar x_1 gezeigt, als

\bar x_1=\frac{1}{10}(3,3+4,9+...+5,0)=4,9.

Sie ergeben den Mittelwertvektor

\underline{\bar x}=   \begin{pmatrix} 4,9\\ 40\\ 49   \end{pmatrix}

Für die zentrierte Datenmatrix X* erhält man die zentrierten Beobachtungen, indem man von den Spalten den entsprechenden Mittelwert abzieht:

3,3 - 4,9 = -1,6; 24 – 40 = -16; 27 - 49 = -22
4,9 - 4,9 = 0; 41 - 40 = 1; 55 - 49 = 6
...

,

also

\underline{\underline X}^*= \begin{pmatrix} -1,6&-16& -22 \\ 0,0& 1&6\\ 1,0& 6&3 \\ 0,3& 9&5\\ -1,3& -11 &-15 \\ -0,7&-7& 2 \\ 0,1&2& -6\\ 0,2&-5& 5 \\ 1,9&20& 21 \\ 0,1&1&1 \end{pmatrix} .

Man berechnet für die Kovarianzmatrix die Kovarianzen, wie im Beispiel,

s_{12}=\widehat{\rm Cov}(X_1,X_2)=\frac{1}{9}(-1,6 \cdot (-16)+0\cdot 1+...+0,1\cdot 1) =\frac{91}{9}\approx 10,09

und entsprechend die Varianzen

s_{22}=\widehat{V(X_2)}=\frac{1}{9}((-16)^2 +1^2+...+1^2) =\frac{974}{9}\approx 108,22 ,

so dass sich die Kovarianzmatrix

\underline S= \begin{pmatrix} 1,06&10,09&10,91 \\ 10,09& 108,22&106,22\\ 10,91& 106,22&142,89  \end{pmatrix}

ergibt.

Entsprechend erhält man für die Korrelationsmatrix zum Beispiel

r_{12}=\frac{10,09}{\sqrt{1,06\cdot 108,22 }} \approx 0,9439

bzw. insgesamt

\underline R= \begin{pmatrix} 1&0,9439&0,8884 \\ 0,9439& 1&0,8542\\ 0,8884& 0,8542&1  \end{pmatrix} .

[Bearbeiten] Literatur

  • Mardia, KV, Kent, JT, Bibby, JM: Multivariate Analysis, New York 1979
  • Fahrmeir, Ludwig, Hamerle, Alfred, Tutz, Gerhard (Hrsg): Multivariate statistische Verfahren, New York 1996
  • Hartung, Joachim, Elpelt, Bärbel: Multivariate Statistik, München, Wien 1999
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu