Privacy Policy Cookie Policy Terms and Conditions Ajuda:Fórmula - Viquipèdia

Ajuda:Fórmula

De Viquipèdia

Benvinguda
AJUDA
Manteniment
Comunitat
Polítiques
Consultar
Editar
Manteniment i organització
Establir contacte
Edita

Aquesta pàgina és la traducció corresponent de m:Help:Formula (en anglès). Visiteu l'enllaç si voleu informació més completa o per a actualitzar aquesta pàgina.

MediaWiki utilitza LaTeX per a les fórmules matemàtiques. Genera imatges PNG o bé etiquetes HTML, depenent de les preferències de l'usuari i de la complexitat de l'expressió. En un futur, quan els navegadors siguen més intel·ligents, es farà possible generar HTML més complex o també MathML en la majoria dels casos.

Les etiquetes matemàtiques van dins <math> ... </math>. La barra de edició té un botó específic.

Si necessiteu més ajuda, consulteu amb algun usuari de la categoria viquipedistes que usen LaTeX.

[edita] Funcions, símbols i caràcters especials

Tipus Sintaxi Com es veu
Accents i diacrítics \acute{a} \quad \grave{a} \quad \breve{a} \quad \check{a} \quad \tilde{a} \acute{a} \quad \grave{a} \quad \breve{a} \quad \check{a} \quad \tilde{a}
Funcions estàndard (bé) \sin x + \ln y +\operatorname{sgn} z \sin x + \ln y +\operatorname{sgn} z
Funcions estàndard (mal) sin x + ln y + sgn z sin x + ln y + sgn z\,
Superíndexs i subíndexs a^2 a_2 a^{2+1} a_{i,j} {}_1^2X_3^4 \hat a \bar b \vec c \overrightarrow{a b} \overleftarrow{c d} \widehat{d e f} \overline{g h i} \underline{j k l} a^2 \ a_2 \ a^{2+1} \ a_{i,j} \ {}_1^2X_3^4 \ \ \hat a \ \bar b \ \vec c \ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \ \overline{g h i} \ \underline{j k l}
Mòdul s_k \equiv 0 \pmod{m} s_k \equiv 0 \pmod{m}
Derivades \nabla \partial x dx \dot x \ddot y \nabla \ \partial x \ dx \  \dot x\ \ddot y
Sumatoris, límits, integrals ... \sum_{k=1}^n k^2 \prod_{i=1}^n x_i \coprod_{i=1}^n x_i \sum_{k=1}^n k^2 \ \prod_{i=1}^n x_i \ \coprod_{i=1}^n x_i
\lim_{n \to \infty}x_n \int_{-n}^{n} e^x\, dx \iint_{D}^{W} \, dx\,dy \lim_{n \to \infty}x_n \ \int_{-n}^{n} e^x\, dx \iint_{D}^{W} \, dx\,dy
Conjunts \forall x \not\in \varnothing \subseteq A \cap \bigcap B \cup \bigcup \exists \{x,y\} \times C \forall x \not\in \varnothing \subseteq A \cap \bigcap B \cup \bigcup \exists \{x,y\} \times C
Lògica p \land \bar{q} \to p\lor \lnot q p \land \bar{q} \to p\lor \lnot q
Arrel \sqrt{2}\approx 1,4 \sqrt{2}\approx 1,4
\sqrt[n]{x} \sqrt[n]{x}
Fraccions i matrius \frac{2}{4}=0.5 (o {2 \over 4}=0.5) \begin{matrix} {n \choose k} \frac{2}{4}=0.5 \ {n \choose k} \
\begin{matrix} x & y \\ z & v \end{matrix} \begin{vmatrix} x & y \\ z & v \end{vmatrix} \begin{pmatrix} x & y \\ z & v \end{pmatrix} \begin{matrix} x & y \\ z & v \end{matrix} \ \begin{vmatrix} x & y \\ z & v \end{vmatrix} \ \begin{pmatrix} x & y \\ z & v \end{pmatrix}
Relacions \sim \; \approx \; \simeq \; \cong \; \le \; < \; \ll \; \gg \; \ge \; > \; \equiv \; \not\equiv \; \ne \; \propto \; \pm \; \mp \sim \; \approx \; \simeq \; \cong \; \le \; < \; \ll \; \gg \; \ge  \; > \; \equiv \; \not\equiv \; \ne \; \propto \; \pm \; \mp
Geometria \alpha \triangle \angle \perp \| 45^\circ \alpha \ \triangle \ \angle \perp \| \ 45^\circ
Fletxes

\leftarrow \rightarrow \leftrightarrow
\longleftarrow \longrightarrow
\mapsto \longmapsto
\nearrow \searrow \swarrow \nwarrow
\uparrow \downarrow \updownarrow

\leftarrow\ \rightarrow\ \leftrightarrow \longleftarrow\ \longrightarrow \mapsto\ \longmapsto \nearrow\ \searrow\ \swarrow\ \nwarrow \uparrow\ \downarrow\ \updownarrow

\Leftarrow \Rightarrow \Leftrightarrow
\Longleftarrow \Longrightarrow \Longleftrightarrow (o \iff)
\Uparrow \Downarrow \Updownarrow

\Leftarrow\ \Rightarrow\ \Leftrightarrow \Longleftarrow\ \Longrightarrow\ \iff \Uparrow\ \Downarrow\ \Updownarrow

Especial \oplus \otimes \pm \mp \hbar \wr \dagger \ddagger \star * \ldots \circ \cdot \times \bullet \infty \vdash \models \oplus \otimes \pm \mp \hbar \wr \dagger \ddagger \star * \ldots \circ \cdot \times \bullet\ \infty \ \vdash \ \models
Extra: \mathcal \mathcal {45abcdenpqstuvwx} \mathcal {45abcdenpqstuvwx}

Per a la resta de funcions, vegeu m:Help:Formula

[edita] Exemples

Fórmula de l'equació quadràtica

x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

<math>x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

Parèntesis i fraccions

2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)

<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>


Integrals

\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy

<math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>


Sumatoris

\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}

<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}</math>


Equació Diferencial

u'' + p(x)u' + q(x)u=f(x),\quad x>a

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>


Nombres Complexos

|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,

<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,</math>


Límits

\lim_{z\rightarrow z_0} f(z)=f(z_0)\,

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)\,</math>


Integrals

\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR

<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial
D_n(R)}{\partial R}\right]\,dR</math>


Integrals

\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,

<math>\phi_n(\kappa) = 
0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,</math>


Claus i casos

f(x) = \begin{cases}1 & -1 \le x < 0\\  \frac{1}{2} & x = 0\\x&0<x\le 1\end{cases}

f(x) = \begin{cases}1 & -1 \le x < 0\\
\frac{1}{2} & x = 0\\x&0<x\le 1\end{cases}

Subíndexs

{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,

 <math>{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty
\frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,</math>
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu