QAM
维基百科,自由的百科全书
正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。
目录 |
[编辑] 概述
同其它调制方式类似,QAM通过载波某些参数的变化传输信息。在QAM中,数据信号由相互正交的两个载波的幅度变化表示。
模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。由此,模拟信号频率调制和数字信号FSK也可以被认为是QAM的特例,因为它们本质上就是相位调制。这里主要讨论数字信号的QAM,虽然模拟信号QAM也有很多应用,例如NTSC和PAL制式的电视系统就利用正交的载波传输不同的颜色分量。
类似于其他数字调制方式,QAM发射信号集可以用星座图方便地表示。星座图上每一个星座点对应发射信号集中的一个信号。设正交幅度调制的发射信号集大小为N,称之为N-QAM。星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。数字通信中数据常采用二进制表示,这种情况下星座点的个数一般是2的幂。常见的QAM形式有16-QAM、64-QAM、256-QAM等。星座点数越多,每个符号能传输的信息量就越大。但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。因此高阶星座图的可靠性比低阶要差。
当对数据传输速率的要求高过8-PSK能提供的上限时,一般采用QAM的调制方式。因为QAM的星座点比PSK的星座点更分散,星座点之间的距离因之更大,所以能提供更好的传输性能。但是QAM星座点的幅度不是完全相同的,所以它的解调器需要能同时正确检测相位和幅度,不像PSK解调只需要检测相位,这增加了QAM解调器的复杂性。
M-QAM信号波形的表达式为:
- 其中g(t)为码元信号脉冲。
因此QAM可以分解为分别在两个正交的载波cos2πfct与sin2πfct上的M1-PAM与M2-PAM的叠加,其中M1M2 = M。
将上面sm(t)变形得到
- 其中,θm = arctan(Ams / Amc)。
因此,M-QAM还可以看作是M1-PAM与M2-PSK的叠加,其中M1M2 = M。
[编辑] 性能
数字通信中经常用错误率(包括误符号率和误比特率)与信噪比的关系衡量调制和解调方式的性能。下面给出一些概念的记法,以得到AWGN信道下错误率的表达式:
- M = 星座点的个数
- Eb = 平均比特能量
- Es = 平均符号能量 =
- N0 = 噪声功率谱密度
- Pb = 误比特率
- Pbc = 每个正交载波上的误比特率
- Ps = 误符号率
- Psc = 每个正交载波上的误符号率
- Q(x)表示有着零均值和单位方差的高斯随机变量t 大于x的概率。它与高斯误差补函数的关系是:。
[编辑] 矩形QAM
矩形QAM(Rectangular QAM)的星座图呈矩形网格配置。因为矩形QAM信号之间的最小距离并不是相同能量下最大的,因此它的误码率性能没有达到最优。不过,考虑到矩形QAM等效于两个正交载波上的脉冲幅度调制(PAM)的叠加,因此矩形QAM的调制解调比较简单。而后面介绍的非矩形QAM虽然能达到略好一些的误码率性能,但是付出的代价是困难得多的调制和解调。
最早的矩形QAM一般是16-QAM。其原因是很容易就看得出来2-QAM和4-QAM实际上是二进制相移键控(BPSK)和正交相移键控(QPSK),而8-QAM则有将单数位的位分到两个载波上的问题,8-PSK要容易得多,因此8-QAM很少被使用。
[编辑] 误码率性能
可以通过单个正交载波上PAM的性能近似得到QAM的误码率。假设矩形M-QAM可分解为两个正交的-PAM,则有
- ,
因此
- .
精确的误比特率要看比特与码元符号之间的映射关系。对于以格雷码作比特配置并且每个载波承载相同比特数的情况,由于相邻两个符号之间仅相差一个比特,因此可以得到误比特率:
- ,
因此
- .
- 单数位-k QAM的误码率性能
对于k如8-QAM(k = 3)要给出误码率要困难得多,一个近似上限为:
- .
精确的误比特率Pb要看位的排列。
[编辑] 非矩形QAM
QAM本身有许多可以使用的排列,这里只列出两种为例。
环状8-QAM是最佳的8-QAM,它可以使用最低的平均能量来达到最小的欧几里德度量。环状的16-QAM是亚优化的。环状的QAM非常好地显示出QAM与相移键控之间的关系。不规则QAM的错误率很难广泛地给出,因为它们按其排列各不相同。显然的上限是欧几里德度量:
- .
在这里误码率也与位的排列有关。
虽然对一个特别的M有最佳的、不规则的QAM,但是一般人们还是使用规则的QAM,因为它们的调制和解调要方便得多。
[编辑] 参见
- 调制 for other examples of modulation techniques
- PSK
- FSK