ทฤษฎีระบบควบคุม
จากวิกิพีเดีย สารานุกรมเสรี
ทฤษฎีระบบควบคุม (อังกฤษ: control theory) เป็นสาขาหนึ่งของ คณิตศาสตร์ และ วิศวกรรมศาสตร์
ก่อนอื่นเราควรจะทำความเข้าใจถึงจุดประสงค์ของการควบคุม, ในที่นี้ การควบคุมหมายถึง การควบคุมระบบพลศาสตร์ ให้มีค่าเอาท์พุตที่ต้องการ โดยการป้อนค่าอินพุตที่เหมาะสมให้กับระบบ. ตัวอย่างที่เห็นได้ทั่วไป เช่น ระบบควบคุมอุณหภูมิห้องของเครื่องปรับอากาศ หรือ แม้แต่ลูกลอยในโถส้วม ที่เปิดน้ำปิดน้ำโดยอัตโนมัติเมื่อน้ำหมดและน้ำเต็ม
การควบคุมการขับเคลื่อนยานพาหนะ เช่น รถยนต์ ก็ถือเป็นการควบคุมชนิดหนึ่ง โดยมีการควบคุมทิศทาง และ ความเร็ว โดยผู้ขับขี่ ระบบควบคุมประเภทที่ต้องมีคนเข้ามาเกี่ยวข้องนี้ เป็น ระบบควบคุมไม่อัตโนมัติ (manual control) ทฤษฎีระบบควบคุมจะครอบคลุมเฉพาะ การวิเคราะห์ และ ออกแบบ ระบบควบคุมอัตโนมัติ (automatic control) เท่านั้น เช่น ระบบขับเคลื่อนอัตโนมัติ (cruise control)
ระบบควบคุมยังอาจแบ่งออกได้เป็นระบบควบคุมวงเปิด (open-loop control) คือ ระบบควบคุมที่ไม่ได้ใช้สัญญาณจากเอาท์พุต มาบ่งชี้ถึงลักษณะการควบคุม ส่วนระบบควบคุมวงปิด (closed-loop control) หรือ ระบบป้อนกลับ (feedback control) นั้นจะใช้ค่าที่วัดจากเอาท์พุต มาคำนวณค่าการควบคุม นอกจากนี้ยังอาจแบ่งได้ตามคุณลักษณะของระบบ เช่น เป็นเชิงเส้น (linear) / ไม่เป็นเชิงเส้น (nonlinear), แปรเปลี่ยนตามเวลา (time-varying) / ไม่แปรเปลี่ยนตามเวลา (time-invariant)
สารบัญ |
[แก้] ประเภทของปัญหาระบบควบคุม
ปัญหาของทฤษฎีระบบควบคุมนั้น สามารถแยกออกได้เป็นประเภทใหญ่ๆ 2 ประเภท คือ
- ปัญหาระบบคงค่า (regulator problem) คือ ปัญหาที่มีจุดประสงค์ของการควบคุม ให้เอาต์พุตของระบบมีค่าคงที่ ต้านทานการรบกวน (disturbance) ที่เข้ามาในระบบ และมีผลทำให้ระบบเปลี่ยนแปลง
- ปัญหาระบบปรับค่าตาม (tracking หรือ servo problem) คือ ปัญหาที่มีจุดประสงค์ของการควบคุม ให้เอาต์พุตมีค่าเท่ากับสัญญาณอ้างอิง เมื่อสัญญาณอ้างอิงเปลี่ยนไป ระบบควบคุมจะทำการปรับให้ สัญญาณเอาต์พุตมีค่าตาม (track) สัญญาณอ้างอิง
[แก้] ประวัติศาสตร์และการพัฒนาของระบบควบคุมอัตโนมัติ
[แก้] ระบบควบคุมในยุคโบราณ
การใช้ระบบควบคุมวงปิด นั้นมีมาแต่โบราณกาล ตัวอย่างเช่น นาฬิกาน้ำของกรีก ซึ่งมีการใช้ลูกลอยในการควบคุมระดับน้ำในถัง อุปกรณ์ที่ถือว่าเป็นจุดเริ่มต้น ของการใช้ระบบควบคุมป้อนกลับในวงการอุตสาหกรรม ก็คือ ลูกเหวี่ยงหนีศูนย์กลาง (centrifugal governor) หรือเรียก fly-ball governor ในการควบคุมความเร็วในการหมุน เครื่องจักรไอน้ำที่ประดิษฐ์ขึ้นโดย เจมส์ วัตต์ (James Watt) ในปี ค.ศ. 1788
[แก้] จุดกำเนิดของทฤษฎีระบบควบคุม
แบบจำลองคณิตศาสตร์ของระบบควบคุม : ในยุคก่อนหน้านี้ การออกแบบระบบควบคุมต่าง ๆ นั้น เป็นไปในลักษณะลองผิดลองถูก ไม่ได้มีการใช้คณิตศาสตร์ในการวิเคราะห์ ออกแบบแต่อย่างใด จนกระทั่งในปี ค.ศ. 1840 นักดาราศาสตร์ชาวอังกฤษ จอร์จ แอรี (George Biddell Airy) นั้นได้ประดิษฐ์ อุปกรณ์ควบคุมทิศทางของกล้องดูดาว โดยอุปกรณ์นี้จะหมุนกล้องดูดาว เพื่อชดเชยกับการหมุนของโลกโดยอัตโนมัติ ในระหว่างการออกแบบ แอรีได้สังเกตถึงความไม่เสถียร (instability) ของระบบป้อนกลับ จึงใช้สมการเชิงอนุพันธ์ในการจำลอง และ วิเคราะห์พฤติกรรมของระบบ การวิเคราะห์เสถียรภาพของระบบนี้เป็นหัวใจสำคัญของทฤษฎีระบบควบคุม
ทฤษฎีเสถียรภาพ : ในปี ค.ศ. 1868 เจมส์ เคลิร์ก แมกซ์เวลล์ (James Clerk Maxwell) เป็นบุคคลแรก ที่ทำการศึกษาถึงเสถียรภาพของ ลูกเหวี่ยงหนีศูนย์กลางของ เจมส์ วัตต์ โดยใช้แบบจำลองสมการเชิงอนุพันธ์เชิงเส้น ทฤษฎีเสถียรภาพของระบบเชิงเส้นของแมกซ์เวลล์นี้ พิจารณาเสถียรภาพของระบบจาก รากของสมการคุณลักษณะ (characteristic equation) ของระบบ ต่อมาในปี ค.ศ. 1892 เลียปูนอฟ (A. M. Lyapunov) ได้ทำการศึกษาถึงเสถียรภาพของระบบไม่เป็นเขิงเส้น และสร้างทฤษฎีเสถียรภาพของเลียปูนอฟ (Lyapunov stability) ทฤษฎีของเลียปูนอฟนี้เป็นทฤษฎีที่สำคัญที่ไม่ได้รับความสนใจ จนกระทั่งหลายสิบปีต่อมา
[แก้] ระบบควบคุมแบบดั้งเดิม
- ระบบควบคุมแบบดั้งเดิม (classical control) หมายถึง ระบบควบคุมที่ออกแบบ และ วิเคราะห์ บนโดเมนความถี่ (หรือ โดเมนการแปลงฟูริเยร์) และ โดเมนการแปลงลาปลาซ โดยการใช้แบบจำลองในรูปของ ฟังก์ชันส่งผ่าน (transfer function) โดยไม่ได้ใช้ข้อมูลรายละเอียดของไดนามิกส์ภายในของระบบ (internal system dynamic)
พัฒนาการของทฤษฎีระบบควบคุมในช่วงนี้นั้น ส่วนใหญ่พัฒนาขึ้นเพื่อประยุกต์ใช้งานในทางทหาร และ ทางระบบสื่อสาร อันเนื่องมาจากสงครามโลกครั้งที่สอง และ การขยายตัวของโครงข่ายสื่อสารโทรศัพท์
พัฒนาการเพื่อใช้งานในระบบโครงข่ายโทรศัพท์ : ในช่วงยุคที่มีการขยายตัวของระบบสื่อสารโทรศัพท์นั้น ระบบสื่อสารทางไกลมีความจำเป็นต้องใช้อุปกรณ์ขยายสัญญาณด้วยหลอดสูญญากาศ ในปี ค.ศ. 1927 แนวความคิดและประโยชน์ของระบบป้อนกลับแบบลบ ได้ถูกนำเสนอในรูปของ อุปกรณ์ขยายสัญญาณป้อนกลับแบบลบ (negative feedback amplifier) โดย เบล็ค (H.S. Black) แต่การวิเคราะห์เสถียรภาพของระบบขยายสัญญาณตามทฤษฎีของแมกซ์เวลล์ โดยใช้วิธีของ เราท์-ฮิวรวิทซ์ (Routh-Hurwitz) นั้นเป็นไปได้ยาก เนื่องจากความซับซ้อนของระบบ วิศวกรสื่อสาร ของ Bell Telephone Laboratories จึงได้นำเสนอการวิเคราะห์บนโดเมนความถี่ โดยในปี ค.ศ. 1932 ไนควิสต์ (H. Nyquist) นำเสนอ เกณฑ์เสถียรภาพของไนควิสต์ (Nyquist stability criterion) ซึ่งใช้วิธีการพล็อตกราฟเชิงขั้ว ของผลตอบสนองความถี่ตลอดวงรอบ (loop frequency response) ของระบบ ต่อมาในปี ค.ศ. 1940 โบดี (H.W. Bode) ได้นำเสนอวิธีการวิเคราะห์เสถียรภาพโดย ขอบเขตอัตราขยาย (gain margin) และ ขอบเขตมุม (phase margin) จาก กราฟ ขนาด (magnitude) และ มุม (phase) ของผลตอบสนองความถี่ เรียก โบดีพล็อต (Bode plot)
พัฒนาการเพื่อการใช้งานทางด้านการทหาร : ปัญหาหลายปํญหาในทางหทาร เช่น ปัญหาการนำร่องการเดินเรืออัตโนมัติ ปัญหาการเล็งเป้าโดยอัตโนมัติ นั้นเป็นแรงผลักดันสำคัญให้เกิดการพัฒนาการทางทฤษฎีระบบควบคุมที่สำคัญหลายอย่าง ในปี ค.ศ. 1922 มินอร์สกี (N. Minorsky) ได้กำหนดและวิเคราะห์กฎของการควบคุมแบบ พีไอดี (PID controller) หรือ สัดส่วน-ปริพันธ์-อนุพันธ์ (proportional-integral-derivative) ซึ่งยังเป็นที่นิยมใช้อย่างกว้างขวางในปัจจุบัน เพื่อใช้ในการนำร่องการเดินเรือ ปัญหาที่สำคัญในช่วงนั้นคือ การเล็งเป้าของปืนจากเรือ หรือ เครื่องบิน ซึ่งในปี ค.ศ. 1934 ฮาเซน (H.L. Házen) ได้บัญญัติคำสำหรับประเภทปัญหาการควบคุมกลไกนี้ว่า กลไกเซอร์โว (servomechanisms) การวิเคราะห์และออกแบบนั้นก็ใช้วิธีการบนโดเมนความถี่ จนกระทั่ง ในปีค.ศ. 1948 อีแวนส์ (W. R. Evans) ซึ่งทำงานกับปัญหาทางด้านการนำร่องและควบคุมเส้นทางบิน ซึ่งส่วนใหญ่นั้นเป็นระบบที่ไม่เสถียร ได้ประสบกับปํญหาการวิเคราะห์เสถียรภาพบนโดเมนของความถี่ จึงได้หันกลับไปศึกษาถึงรากของสมการคุณลักษณะ ซึ่งเป็นวิธีการวิเคราะห์บนโดเมนการแปลงลาปลาซ และได้พัฒนาวิธี ทางเดินราก (root locus) ในการออกแบบระบบ
[แก้] ระบบควบคุมสมัยใหม่ (modern control)
- ระบบควบคุมสมัยใหม่ หมายถึง ระบบควบคุมที่ไม่ได้ใช้เทคนิคในการออกแบบแบบดั้งเดิม คือ จากรากของสมการคุณลักษณะ และอยู่บนโดเมนความถี่ แต่เป็นการออกแบบ โดยมีพื้นฐานจากแบบจำลองสมการอนุพันธ์ของไดนามิกส์ของระบบ และเป็นการออกแบบอยู่บนโดเมนเวลา
แรงผลักดันของพัฒนาการจากระบบควบคุมแบบดั้งเดิม มาสู่ระบบควบคุมสมัยใหม่นี้ มีอยู่หลักๆ สองประการคือ
ข้อจำกัดของระบบควบคุมแบบดั้งเดิมต่องานด้านอวกาศยาน : จากความสำเร็จในการส่งดาวเทียมสปุตนิก 1 ของสหภาพโซเวียตในปี ค.ศ. 1957 นั้นกระตุ้นให้เกิดความตื่นตัวของการประยุกต์ใช้งานทางด้านอวกาศยาน ความสำเร็จของโซเวียตนั้นเนื่องมาจากพัฒนาการทางด้านทฤษฎีระบบควบคุมแบบไม่เป็นเชิงเส้น ซึ่งไม่ได้รับความสนใจมากนักจากประเทศตะวันตก เนื่องจากความล้มเหลวในการใช้เทคนิคต่าง ๆ ของระบบควบคุมแบบดั้งเดิม กับงานด้านอวกาศยาน ซึ่งระบบส่วนใหญ่นั้น เป็นระบบหลายตัวแปรแบบไม่เป็นเชิงเส้น (nonlinear multivariable system) จึงมีการหันกลับมาพิจารณาการวิเคราะห์จากปัญหาดั้งเดิม ในรูปของแบบจำลองสมการอนุพันธ์ของระบบ
การประยุกต์ใช้คอมพิวเตอร์กับงานระบบควบคุม : พัฒนาการของคอมพิวเตอร์ มีส่วนสำคัญในการพัฒนาทฤษฎีต่างๆของระบบควบคุม เนื่องจากทำให้สามารถสร้างอุปกรณ์ควบคุมที่สามารถทำงานซับซ้อนได้ รวมทั้งการใช้คอมพิวเตอร์ช่วยคำนวณในการออกแบบกฎของการควบคุม ดังนั้นจึงมีการพัฒนาระบบควบคุมแบบต่าง ๆ ขึ้นอย่างมากมาย
ด้วยเหตุดังกล่าว จึงมีการพัฒนาทฤษฎีระบบควบคุม จากหลายแง่มุม
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมดิจิทัล
จากความพยายามในการใช้คอมพิวเตอร์ซึ่งเป็นดิจิทัล เพื่อการควบคุมระบบซึ่งโดยส่วนใหญ่จะเป็นระบบอนาล็อก จึงส่งผลให้มีการพัฒนาทางทฤษฎีระบบควบคุมดิจิทัล (digital control) โดยในปี ค.ศ. 1952 รากัซซินี (J.R. Ragazzini), แฟรงคลิน (G Franklin) และ ซาเดห์ (L.A. Zadeh ผู้คิดค้น ฟัซซี่ลอจิก) ที่มหาวิทยาลัยโคลัมเบีย ได้พัฒนาทฤษฎีระบบแบบชักข้อมูล (sampled data systems) ขึ้น การใช้คอมพิวเตอร์ในการควบคุมกระบวนการในอุตสาหกรรมนั้น เริ่มครั้งแรกในปี ค.ศ. 1959 ที่ โรงกลั่นน้ำมัน พอร์ต อาเธอร์ (Port Arthur) ในรัฐเท็กซัส
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมแบบเหมาะสมที่สุด
นอกจากนั้นแล้วแนวความคิดของการควบคุมที่ซับซ้อนขึ้นโดยมีการรวม ข้อกำหนดความต้องการทางด้านประสิทธิภาพ (performance) ในการออกแบบระบบควบคุม ซึ่งเรียกว่า ระบบควบคุมแบบเหมาะสมที่สุด (optimal control) รากฐานของทฤษฎีระบบควบคุมแบบเหมาะสมที่สุดนี้มีมายาวนานตั้งแต่ปี ค.ศ. 1696 จาก หลักของความเหมาะสมที่สุด (principle of optimality) ในปัญหา บราคิสโตโครน (Brachistochrone curve) และ แคลคูลัสของการแปรผัน ในปีค.ศ. 1957 ริชาร์ด เบลแมน ได้ประยุกต์ใช้วิธีการ ไดนามิกโปรแกรมมิ่ง(dynamic programming)ของเขา ในการแก้ปัญหาระบบควบคุมแบบเหมาะสมที่สุด แบบเวลาไม่ต่อเนื่อง ต่อมาในปีค.ศ. 1958 พอนเทรียกิน(L.S. Pontryagin) ได้พัฒนา หลักการมากที่สุด(maximum principle หรือบางครั้งก็เรียก minimum principle) สำหรับแก้ปัญหาในรูปของแคลคูลัสของการแปรผัน แบบเวลาต่อเนื่อง
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมสตอแคสติค
การสังเกตถึงผลกระทบของสัญญาณรบกวนต่อประสิทธิภาพของระบบควบคุมนั้นมีมาตั้งแต่ในช่วงระบบควบคุมยุคดั้งเดิม เช่นในช่วงสงครามโลกครั้งที่สอง ในการพัฒนาระบบควบคุมสำหรับเรดาร์ติดเครื่องบิน เพื่อควบคุมการยิง ที่ ห้องทดลองเรดิเอชัน (Radiation Lab) ที่ เอ็มไอที (MIT), ฮอลล์(A.C. Hall)ได้ประสบปัญหาในการออกแบบ เขาได้สังเกตถึงผลกระทบจากการออกแบบที่ไม่ได้คำนึงถึงสัญญาณรบกวนต่อประสิทธิภาพของระบบ ถึงแม้ว่าจะมีการคำนึงถึงผลกระทบของสัญญาณรบกวน แต่ก็ไม่ได้มีการใช้แบบจำลองทางคณิตศาสตร์ของสัญญาณรบกวนในการวิเคราะห์แต่อย่างใด จนกระทั่ง นอร์เบิร์ต วีนเนอร์(N. Wiener) ได้จำลองสัญญาณรบกวน โดยใช้แบบจำลองกระบวนการสตอแคสติก หรือ แบบจำลองทางสถิติ แบบเวลาต่อเนื่อง ในการพัฒนาระบบเล็งเป้าและควบคุมการยิงปืนต่อต้านอากาศยาน โดยใช้ข้อมูลจากเรดาร์ ซึ่งงานของเขาได้ถูกเก็บเป็นความลับ จนถึงปี ค.ศ. 1949 ในช่วงเดียวกันในปี ค.ศ. 1941 คอลโมโกรอฟ(A.N. Kolmogorov) ก็ได้ทำการพัฒนาแบบจำลองสำหรับระบบเวลาไม่ต่อเนื่องขึ้น ระบบควบคุมที่ใช้แบบจำลองสคอแคสติกนี้ในการวิเคราะห์ จะเรียกว่า ระบบควบคุมสตอแคสติก(stochastic control)
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ตัวกรองคาลมาน
การวิเคราะห์และควบคุมระบบบนโดเมนเวลา โดยใช้แบบจำลองตัวแปรสถานะ หรือ ปริภูมิสถานะ(state space) นั้นเป็นหัวใจของทฤษฎีระบบควบคุมสมัยใหม่ รูดอล์ฟ คาลมาน (en:Rudolf Kalman) นั้นถือได้ว่าเป็นบุคคลที่มีส่วนสำคัญในการพัฒนาทฤษฎีระบบควบคุมโดยใช้แบบจำลองตัวแปรสถานะนี้ โดยที่ในปีค.ศ. 1960 คาลมานได้นำทฤษฎีเสถียรภาพของเลียปูนอฟมาใช้ในการออกแบบระบบ ซึ่งเป็นผลให้ผลงานของเลียปูนอฟกลับมาได้รับความสนใจ คาลมานได้พัฒนาวิธีการออกแบบระบบควบคุมแบบเหมาะสมที่สุด จากแบบจำลองปริภูมิสถานะ ในรูปของปัญหาระบบเชิงเส้นคงค่าแบบเหมาะสมที่สุดตามสมการกำลังสอง หรือ LQR (linear quadratic regulator) ในปีเดียวกันนี้ คาลมานได้นำเสนอผลงานของเขาในการประยุกต์ใช้แบบจำลองตัวแปรสถานะนี้เข้ากับแนวความคิดทางด้านสตอแคสติกของวีนเนอร์ และคิดค้นสิ่งที่เรารู้จักกันในชื่อ ตัวกรองคาลมาน (en:Kalman filter) ขึ้นมา โดยการใช้งานจริงครั้งแรกของตัวกรองคาลมาน นั้นได้ถูกประยุกต์เป็นส่วนหนึ่งของระบบนำร่องในโครงการอพอลโล่ (en:Apollo project) ตั้งแต่นั้นมาตัวกรองคาลมานก็ได้ถูกประยุกต์ใช้งานอย่างกว้างขวาง
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมแบบคงทน
(รอเพิ่มเติมเนื้อหา)
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมแบบปรับตัวได้
(รอเพิ่มเติมเนื้อหา)
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมไม่เป็นเชิงเส้น
(รอเพิ่มเติมเนื้อหา)
-ดูรายละเอียดเพิ่มเติมได้ที่บทความหลัก ระบบควบคุมแบบชาญฉลาด
(รอเพิ่มเติมเนื้อหา)
[แก้] สาขาของทฤษฎีระบบควบคุม
- ระบบควบคุมเชิงเส้น (linear control systems)
- ระบบควบคุมไม่เป็นเชิงเส้น (nonlinear control systems)
- ระบบควบคุมดิจิทัล (digital control systems)
- ระบบควบคุมแบบเหมาะสมที่สุด (optimal control systems)
- ระบบควบคุมสตอแคสติค (stochastic control systems)
- ระบบควบคุมแบบคงทน (robust control systems)
- ระบบควบคุมแบบปรับตัวได้ (adaptive control systems)
- ระบบควบคุมแบบชาญฉลาด (intelligent control systems)
[แก้] เอกสารอ้างอิง
- Franklin, G.F., Powel, J.D., and Emami-Naeini, A. Feedback Control of Dynamic Systems, 4thed., Prentice Hall 2002
- Aström, K.J. Control System Design chap.1 preprint 2002
- Lewis, F.L. Applied Optimal Control and Estimation Prentice Hall 1992
- Bellman, R. "Eye of The Hurricane: an autobiography" World Scientific Publishing Co Pte Ltd. 1984