Тиофен
Материал из Википедии — свободной энциклопедии
Тиофе́н — молекулярная масса 84,14 г/моль; бесцветная жидкость с запахом бензола;
Содержание |
[править] Физические и физико-химические свойства
Температура плавления −38,2°С, температура кипения 84,2 °С; d204 1,0649, d04 1,0873; n20D 1,5289; tкрит 307,2С; ркрит 5,69 МПа; μ 1,766 10—30 Кл·м;
[править] Термодинамические константы
- Ср 63,8 Дж/(моль·К);
- ΔH0обр −82,13 кДж/моль;
- ΔH0исп 33,483 кДж/моль,
- ΔS0298 277 Дж/(моль·К).
Хорошо растворим в углеводородах и др. органических растворителях, не растворим в воде. Молекула тиофена плоская.
Гомологи тиофена — бесцветные жидкости, растворимые во многих органических растворителях. Для 2-метилтиофена температура плавления −63,5°С, т. кип. 112,2°С, 4°С d204 1,0194, n20D 1,5203; для 3-метилтиофена соответственно −68,9 °С, 115,4°С, 1,0216 и 1,5204.
[править] Химические свойства тиофенов
Тиофен относится к π-избыточным гетероароматическим системам и обладает выраженными ароматическими свойствами. В реакциях электрофильного замещения (галогенирование, нитрование, формилирование, дейтерирование и др.) тиофен значительно активнее бензола (в некоторых случаях в 104 раз). Реакции идут обычно (иногда исключительно) в α-положение цикла (на 2—3 порядка быстрее, чем в др. положение). Для производных тиофена, содержащих в положении 2 ориентанты II рода, реакции идут с образованием 2,5-дизамещенных. 2,4-Изомеры получают, вводя в реакции исходные соединения в виде комплексов с сильными протонными или апротонными кислотами, что объясняется резким увеличением электроноакцепторной способности заместителя в результате комплексообразования:
Тиофен и его производные менее стабильны, чем их бензольные аналоги, поэтому многие реакции в ряду тиофена сопровождаются поликонденсацией (смолообразованием) и деструкцией. Тиофен достаточно гладко алкилируется лишь в мягких условиях при использовании более активных третичных и вторичных (но не первичных) алкилгалогенидов. Тиофен и его замещенные, содержащие ориентанты I рода, очень легко ацилируются в присутствии SnCl4 или SnCl2; в бензоле, который в этих условиях не ацилируется. Формилирование тиофена протекает под действием ДМФА или N-метилформанилида в присутствии РОСl3; взаимодействует с альдегидами и кетонами в присутствии апротонных или протонных кислот приводит к образованию соединений ряда ди(2-тиенил)метана.
Тиофен и его производные способны к прямому металлированию под действием литийорганических соединений по механизму так называемого протофильного замещения. Реакция протекает быстро и практически количественно при комнатной температуре в большинстве случаев с высокой региоспецифичностью с образованием α-металлированных производных. В очень мягких условиях (-70°С) под действием C4H9Li протекает также реакция обмена атома галогена в цикле тиофена на металл, причем обмен галогена в α-положении предпочтительнее, чем в β-положении, а обмен I на Li идет легче, чем Вr. В реакции нуклеофильного замещения легко вступают главным образом замещенные тиофена, содержащие в цикле ориентанты II рода.
Тиофен его гомологи и некоторые производные способны к реакциям радикального замещения, например арилированию по реакции Гомберга-Бахмана-Хея. Др. важнейший способ арилирования-УФ облучение иодтиофена в ароматическом растворителе или иодпроизводного ароматического характера в тиофене.
Свойства непредельных соединений выражены в тиофене слабо. Так, в диеновый синтез вступают только конденсированные тиофены, например, замещенные бензо[с]тиофена. Гидрирование в ряду тиофена идет обычно с трудом, что связано с его отравляющим действием на многие катализаторы. Тем не менее тиофен в присут. Pd/C, MoS, и др. превращается в тетрагидротиофен (тиофан, температура плавления −96,2°С, температура кипения 121,1°С, 4° d204 0,9987, n20D 1,54048). Гомологи тиофена и многие замещенные легко превращаются в соответствующие производные тиофана в условиях ионного гидрирования, например при действии трифторуксусной кислоты и триэтилсилана. Дигидротиофен образуется при восстановлении тиофена Na в жидком NH3. При аналогичном восстановлении гомологов тиофена и его производных процесс обычно не останавливается на стадии образования дигидропроизводных, а происходит расщепление цикла с образованием соответствующих соединений алифатического ряда, например:
При действии скелетного Ni с участием адсорбированного Н, идет восстановительная десульфуризация замещенных тиофена с образованием алифатических соединений:
Эта реакция — один из путей получения из производных тиофена соединения различных классов, например карбоновых кислот, высших спиртов, простых эфиров, аминоспиртов и аминокислот, а также лактамов макроциклических кетонов, кетокислот и кетолактонов.
Тиофен и его замещенные сравнительно устойчивы к действию окислителей. Однако при действии Н2О2 или надкислот происходит окисление до сульфоксида (в свободном состоянии не выделен) или до сульфона. Оба эти соединения представляют собой типичную диеновую систему, способную, напрапример, к диеновому синтезу, в котором они могут выполнять роль как диена, так и диенофила.
Под действием некоторых алкилирующих агентов или ди-(этоксикарбонил) карбена образуются производные тиофена с положительно заряженным трехвалентным (сульфониевым) атомом серы, например:
[править] Источники и способы получения
Тиофен и его гомологи содержатся в продуктах коксования каменного угля (откуда их и выделяют вместе с каменноугольном бензолом) и продуктах термического разложения сланцев (в некоторых фракциях до 70 % по массе). В сыром бензоле содержание тиофен составляет 1,3—1,4 %, в получаемом из сырого бензола тиофено-бензольном концентрате-30—35 %. Основное сырье для синтеза тиофена и его гомологов — углеводороды нефтяных фракций С4 и С5, из которых они могут быть получены термическим взаимодействием с S или каталитической реакцией с H2S или SO2. Тиофен синтезируют также пропусканием фурана, ацетилена или 1,3-бутадиена и H2S над Al2O3. Гомологи тиофена, а также некоторые производные — получают замыканием соответствующих 1,4-дикарбонильных соединений с помощью P2S5, например:
Соединения ряда тиофена — реагенты для разделения элементов, оптические отбеливатели (на основе 2,5-тиофендикарбоновой кислоты), физиологически активные соединения. Многие производные тиофена лекарственные препараты (например, антигельминтный препарат комбантрин, модифицированный антибиотики цефалотин, цефалоридин), мономеры для получения электропроводящих полимеров.
[править] Нахождение в природе
Производные тиофена широко распространены в живой природе: грибах и некоторых других высших растениях. Например, грибок Daedelia juniperina и корни Echinops spaerocephalus содержат непредельные соединения тиофена:
[править] Литература
- Блике Ф., в сб.: Гетероциклические соединения, под ред. Р. Эльдерфилда, пер. с англ., т. 1, М., 1953;
- Новые направления химии тиофена, М , 1976;
- Беленький Л. И., Гультяй В. П., «Химия гетероциклических соединений», 1981, № 6, с. 723—43;
- Общая органическая химия, пер. с англ., т. 9, М., 1985, с. 229—93;
- Анисимов А. В., Викторова Е. А., Данилова Т. А., Молекулярные перегруппировки сероорганичсских соединений, М., 1989.